Phosphorus magnetic resonance spectroscopy in malformations of cortical development

Purpose:  The aim of this study was to evaluate phospholipid metabolism in patients with malformations of cortical development (MCDs).

[1]  Manisha N. Patel,et al.  Seizure-induced changes in mitochondrial redox status. , 2006, Free radical biology & medicine.

[2]  H. Thomas,et al.  Intracellular pH measurements of the whole head and the basal ganglia in chronic liver disease: A phosphorus-31 MR spectroscopy study , 2000, Metabolic Brain Disease.

[3]  I. Scheffer,et al.  Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. , 2010, Brain : a journal of neurology.

[4]  H P Hetherington,et al.  Regional energetic dysfunction in hippocampal epilepsy , 2005, Acta neurologica Scandinavica.

[5]  Sanjay M Sisodiya,et al.  Malformations of cortical development: burdens and insights from important causes of human epilepsy , 2004, Lancet Neurology.

[6]  F. Abboud,et al.  Acid-sensing ion channels interact with and inhibit BK K+ channels , 2008, Proceedings of the National Academy of Sciences.

[7]  Neel Madan,et al.  New directions in clinical imaging of cortical dysplasias , 2009, Epilepsia.

[8]  Ravi S. Menon,et al.  Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla , 2006, Psychiatry Research: Neuroimaging.

[9]  R. Guillevin,et al.  [Phosphorus magnetic resonance spectroscopy: Brain pathologies applications]. , 2010, Journal of neuroradiology. Journal de neuroradiologie.

[10]  M. Tsuji,et al.  Relative phosphocreatine and nucleoside triphosphate concentrations in cerebral gray and white matter measured in vivo by 31P nuclear magnetic resonance , 1996, Brain Research.

[11]  M. Lequin,et al.  Cortical brain malformations: effect of clinical, neuroradiological, and modern genetic classification. , 2008, Archives of neurology.

[12]  J. Cross Functional neuroimaging of malformations of cortical development. , 2003, Epileptic disorders : international epilepsy journal with videotape.

[13]  F. Abboud,et al.  Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Walter Heindel,et al.  Phosphorus‐31 MR spectroscopy of normal adult human brain and brain tumours , 2002, NMR in biomedicine.

[15]  A. Represa,et al.  Basic mechanisms of MCD in animal models. , 2009, Epileptic disorders : international epilepsy journal with videotape.

[16]  R. Ordidge,et al.  Acute elevation and recovery of intracellular [Mg2+] following human focal cerebral ischemia , 1993, Neurology.

[17]  P. Livrea,et al.  Metabolic Changes in Neuronal Migration Disorders: Evaluation by Combined MRI and Proton MR Spectroscopy , 1999, Epilepsia.

[18]  Xiao-Hong Zhu,et al.  In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T. , 2006, Magnetic resonance imaging.

[19]  E. Shoubridge,et al.  Characterization of astrocytomas, meningiomas, and pituitary adenomas by phosphorus magnetic resonance spectroscopy. , 1991, Journal of neurosurgery.

[20]  D. Garfinkel,et al.  Magnesium in cardiac energy metabolism. , 1986, Journal of molecular and cellular cardiology.

[21]  I. Wilkinson,et al.  Magnetic resonance perfusion imaging in malformations of cortical development , 2007, Acta radiologica.

[22]  Jullie W Pan,et al.  Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy , 1997, Neurology.

[23]  M. Chesler Regulation and modulation of pH in the brain. , 2003, Physiological reviews.

[24]  M. Weiner,et al.  What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? , 1994, Journal of Neurology.

[25]  R. Guillevin,et al.  [Phosphorus magnetic resonance spectroscopy: Brain pathologies applications]. , 2010, Journal of neuroradiology. Journal de neuroradiologie.

[26]  Dennis D Spencer,et al.  Glutamate–glutamine Cycling in the Epileptic Human Hippocampus , 2002, Epilepsia.

[27]  M. Duchowny Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management , 2009, Epilepsia.

[28]  P. G. Larsson,et al.  3T phased array MRI improves the presurgical evaluation in focal epilepsies , 2005, Neurology.

[29]  W. J. Oakes,et al.  Neuronal migration disorders: Positron emission tomography correlations , 1994, Annals of neurology.

[30]  R. de Beer,et al.  Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals , 2001, Comput. Biol. Medicine.

[31]  M. Roden,et al.  Brain energy metabolism during hypoglycaemia in healthy and Type 1 diabetic subjects , 2004, Diabetologia.

[32]  John H Krystal,et al.  Extracellular metabolites in the cortex and hippocampus of epileptic patients , 2005, Annals of neurology.

[33]  R. Kuzniecky,et al.  A developmental and genetic classification for malformations of cortical development , 2005, Neurology.

[34]  J T Vaughan,et al.  Evaluation of 31P metabolite differences in human cerebral gray and white matter , 1998, Magnetic resonance in medicine.

[35]  D. Arnold,et al.  Neuronal metabolic dysfunction in patients with cortical developmental malformations , 1998, Neurology.

[36]  Hoby P Hetherington,et al.  1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy , 2002, Journal of magnetic resonance imaging : JMRI.

[37]  Jullie W Pan,et al.  1H and 31P Spectroscopic Imaging of Epilepsy: Spectroscopic and Histologic Correlations , 2004, Epilepsia.

[38]  K. Uğurbil,et al.  In vivo 31P magnetic resonance spectroscopy of human brain at 7 T: An initial experience , 2003, Magnetic resonance in medicine.

[39]  P. Barker,et al.  Magnesium and pH imaging of the human brain at 3.0 Tesla , 1999, Magnetic resonance in medicine.

[40]  N. Kato,et al.  Reduced intracellular pH in the basal ganglia and whole brain measured by 31P‐MRS in bipolar disorder , 2004, Psychiatry and clinical neurosciences.

[41]  K. Valente,et al.  Multivoxel Proton MR Spectroscopy in Malformations of Cortical Development , 2007, American Journal of Neuroradiology.

[42]  M. Weiner,et al.  Metabolic characteristics of cortical malformations causing epilepsy , 2005, Journal of Neurology.

[43]  B. Barbiroli,et al.  In Vivo Assessment of Free Magnesium Concentration in Human Brain by 31P MRS. A New Calibration Curve Based on a Mathematical Algorithm , 1996, NMR in biomedicine.

[44]  N. Kato,et al.  Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity , 1998, European Archives of Psychiatry and Clinical Neuroscience.

[45]  Yi Zhang,et al.  Tightly coupled brain activity and cerebral ATP metabolic rate , 2008, Proceedings of the National Academy of Sciences.

[46]  E. Malucelli,et al.  In vivo assessment of Mg2+ in human brain and skeletal muscle by 31P-MRS. , 2008, Magnesium research.

[47]  K. Welch,et al.  Low Brain Magnesium in Migraine , 1989, Headache.

[48]  Nicholas Lange,et al.  Age‐related changes in brain energetics and phospholipid metabolism , 2010, NMR in biomedicine.

[49]  J. Allsop,et al.  Changes in Brain Intracellular pH and Membrane Phospholipids on Oxygen Therapy in Hypoxic Patients with Chronic Obstructive Pulmonary Disease , 2003, Metabolic Brain Disease.

[50]  W. Markesbery,et al.  31P magnetic resonance spectroscopy in alzheimer's and pick's disease , 1993, Neurobiology of Aging.

[51]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[52]  R. Simon,et al.  Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury , 2006, The Journal of Membrane Biology.

[53]  M. Tsuji,et al.  In vivo phosphocreatine and ATP in piglet cerebral gray and white matter during seizures , 1998, Brain Research.

[54]  B. Puri,et al.  A human in vivo study of the extent to which 31-phosphorus neurospectroscopy phosphomonoesters index cerebral cell membrane phospholipid anabolism. , 2009, Prostaglandins, leukotrienes, and essential fatty acids.

[55]  Hitten P. Zaveri,et al.  Neurometabolism in human epilepsy , 2008, Epilepsia.

[56]  H. Scharfman,et al.  The neurobiology of epilepsy , 2007, Current neurology and neuroscience reports.

[57]  J. Hajnal,et al.  Variations due to analysis technique in intracellular pH measurements in simulated and in vivo 31P MR spectra of the human brain , 2006, Journal of magnetic resonance imaging : JMRI.

[58]  J A Helpern,et al.  Human focal cerebral ischemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. , 1992, Radiology.

[59]  A. Barkovich,et al.  Current concepts of polymicrogyria , 2010, Neuroradiology.

[60]  M. Weiner,et al.  Regional Distribution of Interictal 31P Metabolic Changes in Patients with Temporal Lobe Epilepsy , 1998, Epilepsia.

[61]  Michael W. Weiner,et al.  Increased pH and Seizure Foci Inorganic Phosphate in Temporal Demonstrated by [31P]MRS , 1992 .

[62]  M. Weiner,et al.  Increased pH and inorganic phosphate in temporal seizure foci demonstrated by [31P]MRS. , 1992, Epilepsia.

[63]  Jullie W Pan,et al.  Quantitative 31P spectroscopic imaging of human brain at 4 Tesla: Assessment of gray and white matter differences of phosphocreatine and ATP , 2001, Magnetic resonance in medicine.

[64]  P. Carlier,et al.  Effect of chronic magnesium supplementation on magnesium distribution in healthy volunteers evaluated by 31P-NMRS and ion selective electrodes. , 1999, British journal of clinical pharmacology.

[65]  L. Tassi,et al.  Neuroimaging of focal cortical dysplasia: neuropathological correlations. , 2003, Epileptic disorders : international epilepsy journal with videotape.