Geochemistry of volcanic rocks and dykes from the Remeshk-Mokhtarabad and Fannuj-Maskutan Ophiolites (Makran Accretionary Prism, SE Iran): New constraints for magma generation in the Middle East Neo-Tethys

[1]  M. Marroni,et al.  Geochemistry of basaltic blueschists from the Deyader Metamorphic Complex (Makran Accretionary Prism, SE Iran): New constraints for magma generation in the Makran sector of the Neo-Tethys , 2022, Journal of Asian Earth Sciences.

[2]  W. Griffin,et al.  Geochemical variability among stratiform chromitites and ultramafic rocks from Western Makran, South Iran , 2022, Lithos.

[3]  A. Langone,et al.  The Bajgan Complex revealed as a Cretaceous ophiolite-bearing subduction complex: A key to unravel the geodynamics of Makran (southeast Iran) , 2021, Journal of Asian Earth Sciences.

[4]  W. Griffin,et al.  Amphibolites from makran accretionary complex record Permian-Triassic Neo-Tethyan evolution , 2021, International Geology Review.

[5]  M. Marroni,et al.  New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: Constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan Complex (Makran Accretionary Prism, SE Iran) , 2021 .

[6]  M. Marroni,et al.  The western Durkan Complex (Makran Accretionary Prism, SE Iran): A Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style , 2021 .

[7]  M. Bröcker,et al.  Unravelling metamorphic ages of suture zone rocks from the Sabzevar and Makran areas (Iran): Robust age constraints for the larger Arabia–Eurasian collision zone , 2021, Journal of Metamorphic Geology.

[8]  A. Langone,et al.  Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data , 2020, Minerals.

[9]  W. Xiao,et al.  Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction , 2020, International Geology Review.

[10]  M. Marroni,et al.  The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran) , 2020 .

[11]  F. Lucci,et al.  Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran) , 2020, International Geology Review.

[12]  Fatemeh Nouri,et al.  New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh , 2018, International Geology Review.

[13]  J. Burg Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation , 2018, Earth-Science Reviews.

[14]  I. Monsef,et al.  The Eastern Makran Ophiolite (SE Iran): evidence for a Late Cretaceous fore-arc oceanic crust , 2018, International Geology Review.

[15]  H. Azizi,et al.  The Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone, northwest Iran: Mantle plume or active margin? , 2018 .

[16]  J. Burg,et al.  Formation and preservation of fresh lawsonite: Geothermobarometry of the North Makran Blueschists, southeast Iran , 2017 .

[17]  Y. Dilek,et al.  Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites , 2017 .

[18]  S. Dargahi,et al.  P-T evolution of metapelites from the Bajgan complex in the Makran accretionary prism, south eastern Iran , 2017 .

[19]  M. Marroni,et al.  New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran) , 2017, Gondwana Research.

[20]  V. Bortolotti,et al.  The Jurassic–Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: age and geochemistry , 2017, Geological Magazine.

[21]  J. Burg,et al.  Detrital zircon and provenance analysis of Late Cretaceous–Miocene onshore Iranian Makran strata: Implications for the tectonic setting , 2016 .

[22]  M. Marroni,et al.  ASSOCIATION OF MORB AND SSZ OPHIOLITES ALONG THE SHEAR ZONE BETWEEN COLOURED MÉLANGE AND BAJGAN COMPLEXES (NORTH MAKRAN, IRAN): EVIDENCE FROM THE SORKHBAND AREA , 2016 .

[23]  M. Ghaderi,et al.  Petrology, geochemistry and tectonics of the extrusive sequence of Fannuj-Maskutan ophiolite, Southeastern Iran , 2015, Journal of the Geological Society of India.

[24]  E. Saccani A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics , 2015 .

[25]  J. Burg,et al.  Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran , 2015 .

[26]  E. Saccani,et al.  Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran , 2014 .

[27]  Kaan Sayıt IMMOBILE TRACE ELEMENT SYSTEMATICS OF OCEANIC ISLAND BASALTS: THE ROLE OF OCEANIC LITHOSPHERE IN CREATING THE GEOCHEMICAL DIVERSITY , 2013 .

[28]  H. Furnes,et al.  Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere , 2011 .

[29]  J. Shahabpour Tectonic implications of the geochemical data from the Makran igneous rocks in Iran , 2010 .

[30]  D. Bernoulli,et al.  A giant catastrophic mud‐and‐debris flow in the Miocene Makran , 2008 .

[31]  M. A. Khan,et al.  Petrology of the dykes from the Waziristan Ophiolite, NW Pakistan , 2007 .

[32]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[33]  J. Mahoney,et al.  Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran , 2004 .

[34]  H. Lapierre,et al.  The Tethyan plume: geochemical diversity of Middle Permian basalts from the Oman rifted margin , 2004 .

[35]  A. Photiades,et al.  PETROGENESIS AND TECTONIC SETTING OF VOLCANIC ROCKS FROM THE SUBPELAGONIAN OPHIOLITIC MÉLANGE IN THE AGORIANI AREA (OTHRYS, GREECE) , 2003 .

[36]  A. Photiades,et al.  GEOCHEMISTRY, PETROGENESIS AND TECTONO-MAGMATIC SIGNIFICANCE OF VOLCANIC AND SUBVOLCANIC ROCKS FROM THE KOZIAKAS MÉLANGE (WESTERN THESSALY, GREECE) , 2003 .

[37]  V. Morra,et al.  The transition from alkaline to tholeiitic magmas: a case study from the Orosei-Dorgali Pliocene volcanic district (NE Sardinia, Italy) , 2002 .

[38]  A. Robertson,et al.  Mesozoic sedimentary and magmatic evolution of the Arabian continental margin, northern Syria: evidence from the Baer–Bassit Melange , 2002, Geological Magazine.

[39]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[40]  N. Kukowski,et al.  Structure of the Makran subduction zone from wide-angle and reflection seismic data , 2000 .

[41]  B. Hanan,et al.  Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? , 2000 .

[42]  G. Mccall The geotectonic history of the Makran and adjacent areas of southern Iran , 1997 .

[43]  M. Wilson,et al.  Tectonics and magmatism associated with Mesozoic passive continental margin development in the Middle East , 1997, Journal of the Geological Society.

[44]  B. Upton,et al.  Interaction between Continental Lithosphere and the Iceland Plume—Sr-Nd-Pb Isotope Geochemistry of Tertiary Basalts, NE Greenland , 1994 .

[45]  Jean-Claude Sibuet,et al.  Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS , 1986 .

[46]  S. Hart,et al.  Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Indian Ridge Between the Bouvet Triple Junction and 11 Degrees East , 1983 .

[47]  L. Beccaluva,et al.  Mid-ocean ridge and island-arc affinities in ophiolites from Iran: Palaeographic implications: Complementary reference , 1983 .

[48]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[49]  M. Delaloye,et al.  Ophiolites and melange terranes in Iran: A geochronological study and its paleotectonic implications , 1980 .

[50]  J. Pearce,et al.  Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks , 1979 .

[51]  J. Minster,et al.  Quantitative models of trace element behavior in magmatic processes , 1978 .

[52]  A. Avagyan,et al.  The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling , 2020 .

[53]  E. Saccani,et al.  Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts , 2020 .

[54]  D. Hunziker Magmatic and metamorphic history of the North Makran Ophiolites and Blueschists (SE Iran): Influence of Fe3+/Fe2+ ratios in blueschist facies minerals on geothermobarometric calculations , 2014 .

[55]  D. Bernoulli,et al.  structural style of the Makran Tertiary accretionary complex in SE-Iran , 2013 .

[56]  J. Burg,et al.  Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran , 2013 .

[57]  A. Avagyan,et al.  The Armenian Ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism and Upper Cretaceous obduction over the South Armenian Block , 2010 .

[58]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[59]  G. Mccall A summary of the geology of the Iranian Makran , 2002, Geological Society, London, Special Publications.

[60]  L. Ricou Tethys reconstructed : plates, continental fragments and their Boundaries since 260 Ma from Central America to South-eastern Asia. , 1994 .

[61]  B. Reinhardt,et al.  Inter-relationship of Makran-Oman Mountains belts of convergence , 1990, Geological Society, London, Special Publications.

[62]  A. Şengör,et al.  A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman , 1990, Geological Society, London, Special Publications.

[63]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[64]  R. Kidd,et al.  The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present , 1982, Geological Society, London, Special Publications.

[65]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .