Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signal increases. We demonstrate our framework utilizing EMG datasets collected from nine transradial amputees who performed nine movement classes with Time Domain Power Spectral Descriptors (TD-PSD), Wavelet and Time Domain (TD) feature extraction (FE) methods and a Linear Discriminant Analysis (LDA) classifier. Nonetheless, the concept can be applied to other types of features and classifiers. In addition, the proposed framework is validated with different movement and EMG channel combinations. The results indicate that the proposed framework works well with different FE methods and movement/channel combinations with classification error rates of approximately 13% with TD-PSD FE. Thus, we expect our proposed framework to be a straightforward, yet important, step towards the improvement of the control methods for upper-limb prostheses.

[1]  Nurhazimah Nazmi,et al.  A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions , 2016, Sensors.

[2]  Dario Farina,et al.  Long term stability of surface EMG pattern classification for prosthetic control , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[3]  K.B. Englehart,et al.  Multiple Binary Classifications via Linear Discriminant Analysis for Improved Controllability of a Powered Prosthesis , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[4]  Blair A. Lock,et al.  Determining the Optimal Window Length for Pattern Recognition-Based Myoelectric Control: Balancing the Competing Effects of Classification Error and Controller Delay , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  Guido Bugmann,et al.  Improving the Performance Against Force Variation of EMG Controlled Multifunctional Upper-Limb Prostheses for Transradial Amputees , 2016, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  K. Englehart,et al.  Resolving the Limb Position Effect in Myoelectric Pattern Recognition , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  R.F. Weir,et al.  The Optimal Controller Delay for Myoelectric Prostheses , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  Guanglin Li,et al.  An adaptation strategy of using LDA classifier for EMG pattern recognition , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[9]  Erik J. Scheme,et al.  Confidence-Based Rejection for Improved Pattern Recognition Myoelectric Control , 2013, IEEE Transactions on Biomedical Engineering.

[10]  Kiyoshi Kotani,et al.  A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition , 2017, Sensors.

[11]  Panagiotis K. Artemiadis,et al.  Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography , 2014, Front. Neurorobot..

[12]  Khairul Anam,et al.  Two-channel surface electromyography for individual and combined finger movements , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[13]  Chun-Yi Su,et al.  Boosting-Based EMG Patterns Classification Scheme for Robustness Enhancement , 2013, IEEE Journal of Biomedical and Health Informatics.

[14]  Manfredo Atzori,et al.  Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview , 2015, Front. Syst. Neurosci..

[15]  Xiangyang Zhu,et al.  Dynamical Characteristics of Surface EMG Signals of Hand Grasps via Recurrence Plot , 2014, IEEE Journal of Biomedical and Health Informatics.

[16]  Todd A. Kuiken,et al.  Evaluating EMG Feature and Classifier Selection for Application to Partial-Hand Prosthesis Control , 2016, Front. Neurorobot..

[17]  Kevin B. Englehart,et al.  A robust, real-time control scheme for multifunction myoelectric control , 2003, IEEE Transactions on Biomedical Engineering.

[18]  Kianoush Nazarpour,et al.  Combined influence of forearm orientation and muscular contraction on EMG pattern recognition , 2016, Expert Syst. Appl..

[19]  Dario Farina,et al.  Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses , 2011, Journal of NeuroEngineering and Rehabilitation.

[20]  Dingguo Zhang,et al.  Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control , 2013, Journal of NeuroEngineering and Rehabilitation.

[21]  Jiawei Han,et al.  SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis , 2008, IEEE Transactions on Knowledge and Data Engineering.

[22]  Honghai Liu,et al.  Time series modeling of surface EMG based hand manipulation identification via expectation maximization algorithm , 2015, Neurocomputing.

[23]  James Shearer,et al.  Machine Learning-Based Method for Personalized and Cost-Effective Detection of Alzheimer's Disease , 2013, IEEE Transactions on Biomedical Engineering.

[24]  John J. Soraghan,et al.  Automatic misclassification rejection for LDA classifier using ROC curves , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[25]  Adrian D. C. Chan,et al.  A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses , 2005, IEEE Transactions on Biomedical Engineering.

[26]  Dario Farina,et al.  The Extraction of Neural Information from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges , 2014, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[27]  Dario Farina,et al.  Self-Correcting Pattern Recognition System of Surface EMG Signals for Upper Limb Prosthesis Control , 2014, IEEE Transactions on Biomedical Engineering.

[28]  Adam Wilson,et al.  An Overview Of The UNB Hand System , 2011 .

[29]  Jie Liu,et al.  Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control. , 2015, Medical engineering & physics.

[30]  Guido Bugmann,et al.  Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography , 2013, IEEE Journal of Biomedical and Health Informatics.

[31]  Dario Farina,et al.  Myoelectric Control of Artificial Limbs¿Is There a Need to Change Focus? [In the Spotlight] , 2012, IEEE Signal Process. Mag..

[32]  E. Biddiss,et al.  Upper limb prosthesis use and abandonment: A survey of the last 25 years , 2007, Prosthetics and orthotics international.

[33]  Gamini Dissanayake,et al.  Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals , 2012, Expert Syst. Appl..

[34]  Erik Scheme,et al.  Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. , 2011, Journal of rehabilitation research and development.

[35]  Erik J. Scheme,et al.  Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions , 2011, IEEE Transactions on Biomedical Engineering.