TECHNICAL APPENDIX TO "V -FOLD CROSS-VALIDATION IMPROVED: V -FOLD PENALIZATION
暂无分享,去创建一个
[1] K. Pearson,et al. Biometrika , 1902, The American Naturalist.
[2] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[3] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[4] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[5] David M. Allen,et al. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .
[6] Seymour Geisser,et al. The Predictive Sample Reuse Method with Applications , 1975 .
[7] R. Lew. BOUNDS ON NEGATIVE MOMENTS , 1976 .
[8] M. Stone,et al. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[9] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[10] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[11] R. Shibata. An optimal selection of regression variables , 1981 .
[12] B. Efron. Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .
[13] K. Joag-dev,et al. Negative Association of Random Variables with Applications , 1983 .
[14] Ker-Chau Li,et al. Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .
[15] P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .
[16] M. Newton,et al. A Rank Statistics Approach to the Consistency of a General Bootstrap , 1992 .
[17] Ping Zhang. Model Selection Via Multifold Cross Validation , 1993 .
[18] J. Wellner,et al. Exchangeably Weighted Bootstraps of the General Empirical Process , 1993 .
[19] J. Shao. Linear Model Selection by Cross-validation , 1993 .
[20] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[21] C. Mallows. More comments on C p , 1995 .
[22] Sam Efromovich,et al. SHARP-OPTIMAL AND ADAPTIVE ESTIMATION FOR HETEROSCEDASTIC NONPARAMETRIC REGRESSION , 1996 .
[23] L. Breiman. Heuristics of instability and stabilization in model selection , 1996 .
[24] J. Shao. AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .
[25] Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.
[26] Desh Ranjan,et al. Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.
[27] Ethem Alpaydın,et al. Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999, Neural Comput..
[28] G. Claeskens,et al. Testing the Fit of a Parametric Function , 1999 .
[29] Y. Baraud. Model selection for regression on a fixed design , 2000 .
[30] Colin L. Mallows,et al. Some Comments on Cp , 2000, Technometrics.
[31] J. Zinn,et al. Exponential and Moment Inequalities for U-Statistics , 2000, math/0003228.
[32] Andrew G. Glen,et al. APPL , 2001 .
[33] Prabir Burman. Estimation of equifrequency histograms , 2002 .
[34] L. Györfi,et al. A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .
[35] H. J. Mclaughlin,et al. Learn , 2002 .
[36] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[37] Yoshua Bengio,et al. No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..
[38] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[39] S. Keleş,et al. Statistical Applications in Genetics and Molecular Biology Asymptotic Optimality of Likelihood-Based Cross-Validation , 2011 .
[40] Ericka Stricklin-Parker,et al. Ann , 2005 .
[41] ˇ. Markoˇ. ASYMPTOTIC EXPANSION FOR INVERSE MOMENTS OF BINOMIAL AND POISSON DISTRIBUTIONS , 2005 .
[42] Annette M. Molinaro,et al. Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..
[43] S. Boucheron,et al. Moment inequalities for functions of independent random variables , 2005, math/0503651.
[44] Magalie Fromont,et al. Model selection by bootstrap penalization for classification , 2004, Machine Learning.
[45] Yuhong Yang. COMPARING LEARNING METHODS FOR CLASSIFICATION , 2006 .
[46] Radoslaw Adamczak,et al. Moment inequalities for U-statistics , 2006 .
[47] Yuhong Yang. CONSISTENCY OF CROSS VALIDATION FOR COMPARING REGRESSION PROCEDURES , 2007, 0803.2963.
[48] P. Massart,et al. Minimal Penalties for Gaussian Model Selection , 2007 .
[49] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[50] P. Massart,et al. Slope heuristics for heteroscedastic regression on a random design , 2008 .
[51] Stéphane Robin,et al. Nonparametric density estimation by exact leave-p-out cross-validation , 2008, Comput. Stat. Data Anal..
[52] D. Steinberg,et al. Technometrics , 2008 .
[53] Charles J. Stone,et al. AN ASYMPTOTICALLY OPTIMAL HISTOGRAM SELECTION RULE , 2008 .
[54] 英敦 塚原. Aad W. van der Vaart and Jon A. Wellner: Weak Convergence and Empirical Processes: With Applications to Statistics, Springer,1996年,xvi + 508ページ. , 2009 .
[55] Internal. How to: Applications , 2010 .