TECHNICAL APPENDIX TO "V -FOLD CROSS-VALIDATION IMPROVED: V -FOLD PENALIZATION

A match game is provided including a deck of rectangular cards each having a first face with a common design thereon and a second face. Each deck of rectangular cards includes a plurality of numeric cards with an English numeral positioned on the second face, an English alphabetic representation of the numeral positioned on the second face, and a Spanish alphabetic representation of the numeral positioned on the second face.

[1]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[2]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[5]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[6]  Seymour Geisser,et al.  The Predictive Sample Reuse Method with Applications , 1975 .

[7]  R. Lew BOUNDS ON NEGATIVE MOMENTS , 1976 .

[8]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[9]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[10]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[11]  R. Shibata An optimal selection of regression variables , 1981 .

[12]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[13]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[14]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[15]  P. Burman A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods , 1989 .

[16]  M. Newton,et al.  A Rank Statistics Approach to the Consistency of a General Bootstrap , 1992 .

[17]  Ping Zhang Model Selection Via Multifold Cross Validation , 1993 .

[18]  J. Wellner,et al.  Exchangeably Weighted Bootstraps of the General Empirical Process , 1993 .

[19]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[20]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[21]  C. Mallows More comments on C p , 1995 .

[22]  Sam Efromovich,et al.  SHARP-OPTIMAL AND ADAPTIVE ESTIMATION FOR HETEROSCEDASTIC NONPARAMETRIC REGRESSION , 1996 .

[23]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[24]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[25]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[26]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[27]  Ethem Alpaydın,et al.  Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999, Neural Comput..

[28]  G. Claeskens,et al.  Testing the Fit of a Parametric Function , 1999 .

[29]  Y. Baraud Model selection for regression on a fixed design , 2000 .

[30]  Colin L. Mallows,et al.  Some Comments on Cp , 2000, Technometrics.

[31]  J. Zinn,et al.  Exponential and Moment Inequalities for U-Statistics , 2000, math/0003228.

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  Prabir Burman Estimation of equifrequency histograms , 2002 .

[34]  L. Györfi,et al.  A Distribution-Free Theory of Nonparametric Regression (Springer Series in Statistics) , 2002 .

[35]  H. J. Mclaughlin,et al.  Learn , 2002 .

[36]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[37]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[38]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[39]  S. Keleş,et al.  Statistical Applications in Genetics and Molecular Biology Asymptotic Optimality of Likelihood-Based Cross-Validation , 2011 .

[40]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[41]  ˇ. Markoˇ ASYMPTOTIC EXPANSION FOR INVERSE MOMENTS OF BINOMIAL AND POISSON DISTRIBUTIONS , 2005 .

[42]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[43]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[44]  Magalie Fromont,et al.  Model selection by bootstrap penalization for classification , 2004, Machine Learning.

[45]  Yuhong Yang COMPARING LEARNING METHODS FOR CLASSIFICATION , 2006 .

[46]  Radoslaw Adamczak,et al.  Moment inequalities for U-statistics , 2006 .

[47]  Yuhong Yang CONSISTENCY OF CROSS VALIDATION FOR COMPARING REGRESSION PROCEDURES , 2007, 0803.2963.

[48]  P. Massart,et al.  Minimal Penalties for Gaussian Model Selection , 2007 .

[49]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[50]  P. Massart,et al.  Slope heuristics for heteroscedastic regression on a random design , 2008 .

[51]  Stéphane Robin,et al.  Nonparametric density estimation by exact leave-p-out cross-validation , 2008, Comput. Stat. Data Anal..

[52]  D. Steinberg,et al.  Technometrics , 2008 .

[53]  Charles J. Stone,et al.  AN ASYMPTOTICALLY OPTIMAL HISTOGRAM SELECTION RULE , 2008 .

[54]  英敦 塚原 Aad W. van der Vaart and Jon A. Wellner: Weak Convergence and Empirical Processes: With Applications to Statistics, Springer,1996年,xvi + 508ページ. , 2009 .

[55]  Internal How to: Applications , 2010 .