Comparative statics in non-cooperative games via transfinitely iterated play

Abstract Tarski's fixed point theorem establishes the existence of a Nash equilibrium when (a) each player's lattice of strategies is complete and (b) the composite best response function is isotone. Suppose the composite best response function is also isotone in one of the underlying parameters. Then our transfinite variant of iterated best response play is shown to “converge” and to produce an unambiguous comparative statics analysis. The efficacy of this approach is demonstrated with three examples.

[1]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[2]  Hugo Sonnenschein,et al.  On the existence of Cournot equilbrium without concave profit functions , 1976 .

[3]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[4]  J. M. Danskin,et al.  Fictitious play for continuous games , 1954 .

[5]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[6]  Tom Lee,et al.  Market Structure and Innovation: A Reformulation , 1980 .

[7]  Joachim RosenmÜller Über periodizitätseigenschaften spieltheoretischer lernprozesse , 1971 .

[8]  Glenn C. Loury,et al.  Market Structure and Innovation , 1979 .

[9]  James P. Quirk,et al.  Introduction to general equilibrium theory and welfare economics , 1971 .

[10]  P. Halmos Naive Set Theory , 1961 .

[11]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[12]  John W. Mamer,et al.  Uncertainty, Competition, and the Adoption of New Technology , 1987 .

[13]  Jennifer F. Reinganum Strategic Search Theory , 1982 .

[14]  M. Rothschild,et al.  Increasing risk II: Its economic consequences , 1971 .

[15]  James W. Friedman,et al.  Oligopoly and the theory of games , 1977 .

[16]  K. McCardle Information Acquisition and the Adoption of New Technology , 1985 .

[17]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[18]  D. M. Topkis Equilibrium Points in Nonzero-Sum n-Person Submodular Games , 1979 .

[19]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.