Error correction for gate operations in systems of exchange-coupled singlet-triplet qubits in double quantum dots

We present a scheme for correcting for crosstalk- and noise-induced errors in exchange-coupled singlet-triplet semiconductor double quantum dot qubits. While exchange coupling allows the coupling strength to be controlled independently of the intraqubit exchange couplings, there is also the problem of leakage, which must be addressed. We show that, if a large magnetic field difference is present between the two qubits, leakage is suppressed. We then develop pulse sequences that correct for crosstalk- and noise-induced errors and present parameters describing them for the 24 Clifford gates. We determine the infidelity for both the uncorrected and corrected gates as a function of the error-inducing terms and show that our corrected pulse sequences reduce the error by several orders of magnitude.

[1]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[2]  S Das Sarma,et al.  Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem. , 2007, Physical review letters.

[3]  Saeed Fallahi,et al.  Notch filtering the nuclear environment of a spin qubit. , 2016, Nature nanotechnology.

[4]  S. Sarma,et al.  Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits , 2017, 1711.02092.

[5]  Spin-based quantum computation in multielectron quantum dots , 2001, cond-mat/0101102.

[6]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[7]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[8]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[9]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[10]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[11]  Xuedong Hu,et al.  Controllable exchange coupling between two singlet-triplet qubits , 2012, 1206.3112.

[12]  A. C. Doherty,et al.  Suppressing qubit dephasing using real-time Hamiltonian estimation , 2014, Nature Communications.

[13]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[14]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[15]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[16]  F A Calderon-Vargas,et al.  Dynamically Correcting a CNOT Gate for any Systematic Logical Error. , 2016, Physical review letters.

[17]  Xin Wang,et al.  Noise-resistant control for a spin qubit array. , 2013, Physical review letters.

[18]  S. Tarucha,et al.  Single-electron Spin Resonance in a Quadruple Quantum Dot , 2015, Scientific Reports.

[19]  Xin Wang,et al.  Improving the gate fidelity of capacitively coupled spin qubits , 2014, npj Quantum Information.

[20]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[21]  Junkai Zeng,et al.  General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling , 2017, 1703.00816.

[22]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[23]  S Das Sarma,et al.  Multiple-pulse coherence enhancement of solid state spin qubits. , 2006, Physical review letters.

[24]  Edwin Barnes,et al.  Composite pulses for robust universal control of singlet–triplet qubits , 2012, Nature Communications.

[25]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[26]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[27]  Xuedong Hu,et al.  Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule , 2000 .

[28]  Howard M. Wiseman,et al.  Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis , 2011, 1102.3700.

[29]  P. Barthelemy,et al.  Long-distance coherent coupling in a quantum dot array. , 2013, Nature nanotechnology.

[30]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[31]  S. Tarucha,et al.  Detection and control of charge states in a quintuple quantum dot , 2016, Scientific Reports.

[32]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[33]  Amir Yacoby,et al.  Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. , 2010, Physical review letters.

[34]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[35]  Joel R. Wendt,et al.  All-electrical universal control of a double quantum dot qubit in silicon MOS , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[36]  Xuedong Hu,et al.  Fast hybrid silicon double-quantum-dot qubit. , 2011, Physical review letters.

[37]  Amir Yacoby,et al.  Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs , 2011 .

[38]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[39]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[40]  Xin Wang,et al.  Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits , 2017, 1709.02808.

[41]  D. E. Savage,et al.  High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit , 2015, npj Quantum Information.

[42]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[43]  Xin Wang,et al.  Robust quantum gates for singlet-triplet spin qubits using composite pulses , 2013, 1312.4523.

[44]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[45]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[46]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[47]  Charles Tahan,et al.  Charge-noise-insensitive gate operations for always-on, exchange-only qubits , 2016, 1602.00320.

[48]  A. Gossard,et al.  Charge-state conditional operation of a spin qubit. , 2011, Physical review letters.

[49]  L. M. K. Vandersypen,et al.  Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins , 2011, Science.

[50]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[51]  S. Das Sarma,et al.  Concatenated dynamical decoupling in a solid-state spin bath , 2007, 0707.1037.