Statistical-mechanical approach to subgraph centrality in complex networks

[1]  I. Gutman,et al.  Estrada index of cycles and paths , 2007 .

[2]  Ernesto Estrada Topological structural classes of complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Werner Kutzelnigg,et al.  What I like about Hückel theory , 2007, J. Comput. Chem..

[4]  J. A. Rodríguez,et al.  Functional centrality in graphs , 2006, math/0610141.

[5]  Ernesto Estrada Protein bipartivity and essentiality in the yeast protein-protein interaction network. , 2006, Journal of proteome research.

[6]  Ernesto Estrada,et al.  Network robustness to targeted attacks. The interplay of expansibility and degree distribution , 2006 .

[7]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[8]  Ernesto Estrada,et al.  Spectral scaling and good expansion properties in complex networks , 2006, Europhysics Letters (EPL).

[9]  Ernesto Estrada Virtual identification of essential proteins within the protein interaction network of yeast , 2005, Proteomics.

[10]  J. A. Rodríguez-Velázquez,et al.  Atomic branching in molecules , 2006 .

[11]  T. Došlić Bipartivity of fullerene graphs and fullerene stability , 2005 .

[12]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  V. M. L. Santos,et al.  Topology of the hydrogen bond networks in liquid water at room and supercritical conditions: a small-world structure , 2004 .

[16]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[17]  Ernesto Estrada Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.

[18]  M. Tyers,et al.  From large networks to small molecules. , 2004, Current opinion in chemical biology.

[19]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[20]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[21]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[22]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[23]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[24]  S. Strogatz Exploring complex networks , 2001, Nature.

[25]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[26]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[27]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[28]  Kim L. Boyer,et al.  Quantitative measures of change based on feature organization: eigenvalues and eigenvectors , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  D. Cvetkovic,et al.  The largest eigenvalue of a graph: A survey , 1990 .

[30]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[31]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[32]  V. Sós,et al.  Algebraic methods in graph theory , 1981 .