A New Approach for Rainfall Rate Field Space-Time Interpolation for Western Europe

Abstract. The prediction of rainfall rate characteristics at small space-time scales is currently an important topic, particularly within the context of the planning and design of satellite network systems. A new comprehensive interpolation approach is presented in this paper to deal with such an issue. There are three novelties in the proposed approach: (1) the proposed interpolation approach is not directly applied to measured rain precipitation (either radar or raingauge-derived data) but focuses on the coefficients of the fitted statistical distributions and/or computed rain characteristics at each location; (2) the parameter databases are provided and the contour maps of coefficients spanning Western Europe have been created. It conveniently and efficiently provides the rain parameter for any location within the studied map; (3) more speculatively, the 3D space-time interpolation approach can extrapolate to rain parameters at space-time resolutions shorter than those in the NIMROD databases.

[1]  Enric Vilar,et al.  Optimum utilization of the channel capacity of a satellite link in the presence of amplitude scintillations and rain attenuation , 1990, IEEE Trans. Commun..

[2]  Roberto Deidda,et al.  Multifractal analysis and simulation of rainfall fields in space , 1999 .

[3]  S. Grossmann The Spectrum of Turbulence , 2003 .

[4]  Shaun Lovejoy,et al.  Multifractals and extreme rainfall events , 1993 .

[5]  B. Mandelbrot,et al.  Fractal properties of rain, and a fractal model , 1985 .

[6]  Merab Menabde,et al.  Self‐similar random fields and rainfall simulation , 1997 .

[7]  Efi Foufoula-Georgiou,et al.  A space-time downscaling model for rainfall , 1999 .

[8]  Paul S. P. Cowpertwait,et al.  A spatial–temporal point process model of rainfall for the Thames catchment, UK , 2006 .

[9]  Jonas Olsson,et al.  Evaluation of a scaling cascade model for temporal rain- fall disaggregation , 1998 .

[10]  B. Mandelbrot How Long Is the Coast of Britain ? , 2002 .

[11]  G. Kiely,et al.  Multifractal analysis of hourly precipitation , 1999 .

[12]  Nicola Rebora,et al.  RainFARM: Rainfall Downscaling by a Filtered Autoregressive Model , 2006 .

[13]  R. Crane Electromagnetic Wave Propagation Through Rain , 1996 .

[14]  Roberto Benzi,et al.  Multifractal modeling of anomalous scaling laws in rainfall , 1999 .

[15]  T. Lebel,et al.  Disaggregation of Sahelian mesoscale convective system rain fields : Further developments and validation , 1999 .

[16]  Ronny Berndtsson,et al.  Fractal Analysis of High-Resolution Rainfall Time Series , 1993 .

[17]  Thomas L. Bell,et al.  A space‐time stochastic model of rainfall for satellite remote‐sensing studies , 1987 .

[18]  Misha Filip,et al.  Comparative analysis and performance of two predictive fade detection schemes for Ka-band fade countermeasures , 1999, IEEE J. Sel. Areas Commun..

[19]  R. Deidda Rainfall downscaling in a space‐time multifractal framework , 2000 .

[20]  L. Luini,et al.  MultiEXCELL: A New Rain Field Model for Propagation Applications , 2011, IEEE Transactions on Antennas and Propagation.

[21]  Jonas Olsson,et al.  Multifractal analysis of daily spatial rainfall distributions , 1996 .

[22]  Laurent Castanet,et al.  A Large-Scale Space-Time Stochastic Simulation Tool of Rain Attenuation for the Design and Optimization of Adaptive Satellite Communication Systems Operating between 10 and 50 GHz , 2012 .

[23]  Thomas L. Bell,et al.  Space–time scaling behavior of rain statistics in a stochastic fractional diffusion model , 2006 .

[24]  R. Voss Random Fractal Forgeries , 1985 .

[25]  Assela Pathirana,et al.  Estimating rainfall distributions at high temporal resolutions using a multifractal model , 2003 .

[26]  Deliang L. Chen,et al.  The influence of wind and topography on precipitation distribution in Sweden: statistical analysis and modelling , 2003 .

[27]  R. Deidda,et al.  Space-time multifractality of remotely sensed rainfall fields , 2006 .

[28]  Kevin S. Paulson,et al.  Fractal interpolation of rain rate time series , 2004 .

[29]  Efi Foufoula-Georgiou,et al.  Evidence of dynamic scaling in space‐time rainfall , 1999 .

[30]  Ronny Berndtsson,et al.  Multifractal Properties of Daily Rainfall in Two Different Climates , 1996 .

[31]  Joël Lemorton,et al.  Statistical distribution of the fractional area affected by rain , 2008 .

[32]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[33]  Kevin S. Paulson,et al.  A method to estimate trends in distributions of 1 min rain rates from numerical weather prediction data , 2015 .

[34]  Jeffrey D. Niemann,et al.  Nonlinearity and self-similarity of rainfall in time and a stochastic model , 1996 .