Antioxidant defense system responses and role of nitrate reductase in the redox balance maintenance in Bradyrhizobium japonicum strains exposed to cadmium.

[1]  A. Fabra,et al.  Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts) , 2011, BioMetals.

[2]  A. Fabra,et al.  Cadmium Accumulation and Tolerance in Bradyrhizobium spp. (Peanut Microsymbionts) , 2010, Current Microbiology.

[3]  L. Federici,et al.  Glutathione transferases in bacteria , 2009, The FEBS journal.

[4]  K. Tsekova,et al.  Cd (II) stress response during the growth of Aspergillus niger B 77 , 2007, Journal of applied microbiology.

[5]  J. Passos,et al.  Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12 , 2008, Archives of Microbiology.

[6]  A. Fabra,et al.  Growth of Bradyrhizobium sp. SEMIA 6144 in Response to Methylglyoxal: Role of Glutathione , 2008, Current Microbiology.

[7]  Ru-tai Gao,et al.  Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota , 2007 .

[8]  S. Corticeiro,et al.  The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure , 2006 .

[9]  P. Müller,et al.  Role of glutathione in the growth of Bradyrhizobium sp. (peanut microsymbiont) under different environmental stresses and in symbiosis with the host plant. , 2006, Canadian journal of microbiology.

[10]  S. Silver,et al.  A bacterial view of the periodic table: genes and proteins for toxic inorganic ions , 2005, Journal of Industrial Microbiology and Biotechnology.

[11]  M. Delgado,et al.  The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. , 2005, Biochemical Society transactions.

[12]  K. Giller,et al.  Long-term effects of metals in sewage sludge on soils, microorganisms and plants , 1995, Journal of Industrial Microbiology.

[13]  C. Moreno-Vivián,et al.  Nitrate reduction and the nitrogen cycle in archaea. , 2004, Microbiology.

[14]  D. Bhatnagar,et al.  Lipid peroxidative damage on cadmium exposure and alterations in antioxidantsystem in rat erythrocytes: A study with relation to time , 1998, Biometals.

[15]  B. Friedrich,et al.  Three nitrate reductase activities in Alcaligenes eutrophus , 1993, Archives of Microbiology.

[16]  A. McEwan,et al.  The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate , 1988, Archives of Microbiology.

[17]  D. Morse,et al.  HEAVY METAL–INDUCED OXIDATIVE STRESS IN ALGAE 1 , 2003 .

[18]  M. Delgado,et al.  The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. , 2003, Microbiology.

[19]  Beverley Hale,et al.  Molecular and cellular mechanisms of cadmium carcinogenesis. , 2003, Toxicology.

[20]  M. Waisberg,et al.  Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 192, 95-117 , 2003 .

[21]  G. Sawers,et al.  Hierarchy of Carbon Source Selection in Paracoccus pantotrophus: Strict Correlation between Reduction State of the Carbon Substrate and Aerobic Expression of the nap Operon , 2002, Journal of bacteriology.

[22]  L. M. Sandalio,et al.  Cadmium causes the oxidative modification of proteins in pea plants , 2002 .

[23]  C. Moreno-Vivián,et al.  Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158 , 2002, Journal of bacteriology.

[24]  M. Pagni,et al.  The elusive roles of bacterial glutathione S-transferases: new lessons from genomes , 2002, Applied Microbiology and Biotechnology.

[25]  L. M. Sandalio,et al.  Cadmium-induced changes in the growth and oxidative metabolism of pea plants. , 2001, Journal of experimental botany.

[26]  D. A. Russell,et al.  Functional, biochemical and genetic diversity of prokaryotic nitrate reductases , 2001, Cellular and Molecular Life Sciences CMLS.

[27]  D. Richardson,et al.  Nitrate reduction in the periplasm of gram-negative bacteria. , 2001, Advances in microbial physiology.

[28]  G. Sawers,et al.  Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. , 2000, Microbiology.

[29]  J. Cole,et al.  Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. , 1999, The Biochemical journal.

[30]  C. Moreno-Vivián,et al.  Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases , 1999, Journal of bacteriology.

[31]  H. Sies,et al.  Glutathione and its role in cellular functions. , 1999, Free radical biology & medicine.

[32]  R. Gunsalus,et al.  The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite , 1999, Journal of bacteriology.

[33]  D. Richardson,et al.  Inorganic nitrogen metabolism in bacteria. , 1999, Current opinion in chemical biology.

[34]  Ken E. Giller,et al.  Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review , 1998 .

[35]  P. Kiley,et al.  Fnr, NarP, and NarL Regulation of Escherichia coli K-12 napF (Periplasmic Nitrate Reductase) Operon Transcription In Vitro , 1998, Journal of bacteriology.

[36]  Lisa C. Crossman,et al.  The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. , 1998, Biochemical Society transactions.

[37]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[38]  S. Avery,et al.  Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation , 1997, Applied and environmental microbiology.

[39]  G. Thomas,et al.  Escherichia coli K‐12 genes essential for the synthesis of c‐type cytochromes and a third nitrate reductase located in the periplasm , 1996, Molecular microbiology.

[40]  K. Watson,et al.  Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. , 1994, Microbiology.

[41]  P. Somasegaran,et al.  Quantifying the Growth of Rhizobia , 1994 .

[42]  B. Schneider,et al.  Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16 , 1993, Journal of bacteriology.

[43]  M. Anderson,et al.  Determination of glutathione and glutathione disulfide in biological samples. , 1985, Methods in enzymology.

[44]  L. Flohé,et al.  Assays of glutathione peroxidase. , 1984, Methods in enzymology.

[45]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[46]  W B Jakoby,et al.  Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. , 1974, The Journal of biological chemistry.

[47]  D. Donald Determination of nitrate and nitrite , 1957 .

[48]  D. Nicholas,et al.  [144] Determination of nitrate and nitrite , 1957 .

[49]  J. .. Bassham Chloroplast Glutathione Reductase 1 , 2022 .