Symmetry Approach to the Integrability Problem

We review the results of the twenty-year development of the symmetry approach to classifying integrable models in mathematical physics. The generalized Toda chains and the related equations of the nonlinear Schrödinger type, discrete transformations, and hyperbolic systems are central in this approach. Moreover, we consider equations of the Painlevé type, master symmetries, and the problem of integrability criteria for (2+1)-dimensional models. We present the list of canonical forms for (1+1)-dimensional integrable systems. We elaborate the effective tests for integrability and the algorithms for reduction to the canonical form.

[1]  A. Mikhailov,et al.  Towards classification of -dimensional integrable equations. Integrability conditions I , 1998 .

[2]  D. Levi,et al.  On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations , 1992 .

[3]  Alexey Borisovich Shabat,et al.  The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems , 1987 .

[4]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[5]  A. V. Zhiber,et al.  On the Darboux integrable hyperbolic equations , 1995 .

[6]  A. Shabat,et al.  Generalized legendre transformations , 1997 .

[7]  Ben Silver,et al.  Elements of the theory of elliptic functions , 1990 .

[8]  P. Clarkson,et al.  Symmetries and exact solutions for a 2 + 1-dimensional shallow water wave equation , 1997 .

[9]  R. Yamilov Invertible changes of variables generated by Bäcklund transformations , 1990 .

[10]  J. Weiss Periodic fixed points of Bäcklund transformations and the Korteweg–de Vries equation , 1986 .

[11]  B. Fuchssteiner,et al.  Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation , 1982 .

[12]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[13]  V. E. Adler Discretizations of the Landau-Lifshits equation , 2000 .

[14]  B. Fuchssteiner On the hierarchy of the Landau-Lifshitz equation , 1984 .

[15]  A. Mikhailov,et al.  Symmetries — Test of Integrability , 1993 .

[16]  V. E. Adler,et al.  Nonlinear chains and Painleve´ equations , 1994 .

[17]  A. Ramani,et al.  DISCRETE DRESSING TRANSFORMATIONS AND PAINLEVE EQUATIONS , 1997 .

[18]  J. Satsuma,et al.  A study of the alternate discrete Painlevé II equation , 1996 .

[19]  B. Fuchssteiner,et al.  Mastersymmetries, angle variables, and recursion operator of the relativistic Toda lattice , 1989 .

[20]  Vladimir E. Zakharov,et al.  Inverse scattering method with variable spectral parameter , 1987 .

[21]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[22]  A. Leznov,et al.  Canonical transformations generated by shifts in nonlinear lattices , 1993 .

[23]  Decio Levi,et al.  Conditions for the existence of higher symmetries of evolutionary equations on the lattice , 1997 .

[24]  A. Degasperis,et al.  Construction of reflectionless potentials with infinite discrete spectrum , 1994 .

[25]  A. Shabat Third version of the dressing method , 1999 .

[26]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[27]  V. E. Adler,et al.  Explicit auto-transformations of integrable chains , 1994 .

[28]  S. A. Zykov,et al.  The dressing chain of discrete symmetries and proliferation of nonlinear equations , 1998 .

[29]  A. Fokas,et al.  The hierarchy of the Benjamin-Ono equation , 1981 .

[30]  R. Yamilov CONSTRUCTION SCHEME FOR DISCRETE MIURA TRANSFORMATIONS , 1994 .

[31]  A. Shabat,et al.  To a transformation theory of two-dimensional integrable systems , 1997 .

[32]  R. I. Yamilov,et al.  Master symmetries for differential-difference equations of the Volterra type , 1994 .

[33]  Sergei Petrovich Novikov,et al.  HOLOMORPHIC BUNDLES OVER ALGEBRAIC CURVES AND NON-LINEAR EQUATIONS , 1980 .

[34]  S. I. Svinolupov Second-order evolution equations with symmetries , 1985 .

[35]  T. Regge,et al.  Unified Approach to Strings and Vortices with Soliton Solutions , 1976 .

[36]  A. Shabat,et al.  On a class of toda chains , 1997 .

[37]  A. Mikhailov,et al.  Extension of the module of invertible transformations. Classification of integrable systems , 1988 .

[38]  Decio Levi,et al.  The cylindrical Kadomtsev-Petviashvili equation; its Kac-Moody-Virasoro algebra and relation to KP equation , 1988 .

[39]  V. Sokolov,et al.  The Symmetry Approach to Classification of Integrable Equations , 1991 .