Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

We perform a search for galaxy–galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains ∼520 million astronomical sources covering ∼4000 deg2 of the southern sky to a 5σ point–source depth of g = 24.3, r = 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of ∼11 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap (b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation.

[1]  S. Kruk,et al.  Hubble Asteroid Hunter. II. Identifying strong gravitational lenses in HST images with crowdsourcing , 2022, Astronomy &amp; Astrophysics.

[2]  J. Frieman,et al.  STRIDES: Automated uniform models for 30 quadruply imaged quasars , 2022, 2206.04696.

[3]  E. Linder,et al.  Double source lensing probing high redshift cosmology , 2022, Journal of Cosmology and Astroparticle Physics.

[4]  Tianmeng Zhang,et al.  Photometric Redshifts and Galaxy Clusters for DES DR2, DESI DR9, and HSC-SSP PDR3 Data , 2022, Research in Astronomy and Astrophysics.

[5]  D. Gerdes,et al.  The DECam Local Volume Exploration Survey Data Release 2 , 2022, The Astrophysical Journal Supplement Series.

[6]  K. C. Wong,et al.  Survey of Gravitationally lensed objects in HSC Imaging (SuGOHI). VIII. New galaxy-scale lenses from the HSC SSP , 2022, Publications of the Astronomical Society of Japan.

[7]  M. Makler,et al.  Developing a Victorious Strategy to the Second Strong Gravitational Lensing Data Challenge , 2022, Monthly notices of the Royal Astronomical Society.

[8]  S. Suyu,et al.  HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program , 2022, Astronomy &amp; Astrophysics.

[9]  B. Weiner,et al.  Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties , 2021, The Astrophysical Journal.

[10]  C. Dvorkin,et al.  Substructure detection reanalyzed: dark perturber shown to be a line-of-sight halo , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  Ny,et al.  The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint , 2021, The Astrophysical Journal Supplement Series.

[12]  Z. Lukic,et al.  Mining for Strong Gravitational Lenses with Self-supervised Learning , 2021, The Astrophysical Journal.

[13]  F. Courbin,et al.  Search of strong lens systems in the Dark Energy Survey using convolutional neural networks , 2021, Astronomy &amp; Astrophysics.

[14]  Y. Shu,et al.  HOLISMOKES , 2021, Astronomy & Astrophysics.

[15]  D. Nidever,et al.  The DECam Local Volume Exploration Survey: Overview and First Data Release , 2021, The Astrophysical Journal Supplement Series.

[16]  Simon Birrer,et al.  deeplenstronomy: A dataset simulation package for strong gravitational lensing , 2021, J. Open Source Softw..

[17]  D. Gerdes,et al.  The Dark Energy Survey Data Release 2 , 2021, The Astrophysical Journal Supplement Series.

[18]  S. Djorgovski,et al.  Gaia GraL: Gaia DR2 Gravitational Lens Systems. VI. Spectroscopic Confirmation and Modeling of Quadruply Imaged Lensed Quasars , 2020, The Astrophysical Journal.

[19]  J. Zinn,et al.  Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM , 2020, 2012.08534.

[20]  A. Stark,et al.  COOL-LAMPS. I. An Extraordinarily Bright Lensed Galaxy at Redshift 5.04 , 2020, The Astrophysical Journal.

[21]  D. Gerdes,et al.  Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology , 2020, The Astrophysical Journal Supplement Series.

[22]  U. M. Noebauer,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[23]  T. Treu,et al.  TDCOSMO V: strategies for precise and accurate measurements of the Hubble constant with strong lensing , 2020, 2008.06157.

[24]  J. Kneib,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a catalogue of strong galaxy–galaxy lens candidates , 2020, 2007.09006.

[25]  J. Frieman,et al.  TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles , 2020, 2007.02941.

[26]  K. Lee,et al.  Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI) – VII. Discovery and confirmation of three strongly lensed quasars† , 2020, Monthly Notices of the Royal Astronomical Society.

[27]  L. Kewley,et al.  Spatial Variation in Strong Line Ratios and Physical Conditions in Two Strongly Lensed Galaxies at z ∼ 1.4 , 2020, The Astrophysical Journal.

[28]  A. Myers,et al.  Discovering New Strong Gravitational Lenses in the DESI Legacy Imaging Surveys , 2020, The Astrophysical Journal.

[29]  L. Leal-Taixé,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[30]  M. Radovich,et al.  New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey , 2020, The Astrophysical Journal.

[31]  Zooniverse,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI) , 2020, Astronomy & Astrophysics.

[32]  M. Zwaan,et al.  Giant star-forming clumps? , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[33]  F. Courbin,et al.  HOLISMOKES , 2020, Astronomy & Astrophysics.

[34]  S. Suyu,et al.  Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) – V. Group-to-cluster scale lens search from the HSC–SSP Survey , 2020, Monthly Notices of the Royal Astronomical Society.

[35]  F. Courbin,et al.  TDCOSMO. I. An exploration of systematic uncertainties in the inference of $H_0$ from time-delay cosmography , 2019, 1912.08027.

[36]  S. Suyu,et al.  Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) , 2019, Astronomy & Astrophysics.

[37]  D. Gerdes,et al.  STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354 , 2019, Monthly Notices of the Royal Astronomical Society.

[38]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[39]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  A. Myers,et al.  Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey , 2019, The Astrophysical Journal.

[41]  A. K. Qin,et al.  An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.

[42]  C. Fassnacht,et al.  SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars , 2019, Monthly Notices of the Royal Astronomical Society.

[43]  K. Lee,et al.  Survey of gravitationally-lensed objects in HSC imaging (SuGOHI) , 2019, Astronomy & Astrophysics.

[44]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[45]  S. Rodney,et al.  Turning Gravitationally Lensed Supernovae into Cosmological Probes , 2019, The Astrophysical Journal.

[46]  P. Schechter,et al.  Even Simpler Modeling of Quadruply Lensed Quasars (and Random Quartets) Using Witt's Hyperbola , 2019, The Astrophysical Journal.

[47]  R. Massey,et al.  Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[48]  C. Heymans,et al.  LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  A. K. Qin,et al.  Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.

[50]  M. Auger,et al.  Low-mass halo perturbations in strong gravitational lenses at redshift z ∼ 0.5 are consistent with CDM , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  John F. Wu,et al.  Using convolutional neural networks to predict galaxy metallicity from three-colour images , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  M. Auger,et al.  Resolving on 100 pc scales the UV-continuum in Lyman-α emitters between redshift 2 and 3 with gravitational lensing , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  R. McMahon,et al.  Gravitationally lensed quasars inGaia– III. 22 new lensed quasars fromGaiadata release 2 , 2018, Monthly Notices of the Royal Astronomical Society.

[54]  D. Gerdes,et al.  Erratum: Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  S. Djorgovski,et al.  Gaia GraL: Gaia DR2 gravitational lens systems , 2018, Astronomy & Astrophysics.

[56]  Emmanuel Bertin,et al.  Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.

[57]  A. Agnello,et al.  Quasar lenses in the south: searches over the DES public footprint , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[59]  A. Bolton,et al.  Prediction of Supernova Rates in Known Galaxy–Galaxy Strong-lens Systems , 2018, The Astrophysical Journal.

[60]  M. Meneghetti,et al.  The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.

[61]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[62]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[63]  T. Treu,et al.  Probing the nature of dark matter by forward modelling flux ratios in strong gravitational lenses , 2017, Monthly Notices of the Royal Astronomical Society.

[64]  M Soares-Santos,et al.  DES meets Gaia: discovery of strongly lensed quasars from a multiplet search , 2017, Monthly Notices of the Royal Astronomical Society.

[65]  A. Bolton,et al.  The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses , 2017, 1711.00072.

[66]  Sergey E. Koposov,et al.  Gravitationally lensed quasars in Gaia: I. Resolving small-separation lenses , 2017, 1709.08976.

[67]  Daniel Thomas,et al.  The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations , 2017 .

[68]  A. Bolton,et al.  The BOSS Emission-line Lens Survey. V. Morphology and Substructure of Lensed Lyα Emitters at Redshift Z ≈ 2.5 in the BELLS GALLERY , 2017, 1708.08854.

[69]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[70]  T. Collett,et al.  Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.

[71]  J. Rigby,et al.  Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales , 2017, The astrophysical journal. Letters.

[72]  C. Rusu,et al.  Discovery of the First Quadruple Gravitationally Lensed Quasar Candidate with Pan-STARRS , 2017, 1705.08359.

[73]  Research Center for the Early Universe,et al.  Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.

[74]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[75]  A. Amara,et al.  Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass , 2017, 1702.00009.

[76]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.

[77]  M. Makler,et al.  A neural network gravitational arc finder based on the Mediatrix filamentation method , 2016, 1607.04644.

[78]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[79]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[80]  P. Marshall,et al.  Time delay cosmography , 2016, The Astronomy and Astrophysics Review.

[81]  Gary M. Bernstein,et al.  Limiting Magnitude, τ, teff, and Image Quality in DES Year 1 , 2016 .

[82]  G. Bruzual,et al.  Strong gravitational lensing and the stellar IMF of early-type galaxies , 2015, 1512.00462.

[83]  J. Vicente,et al.  DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting , 2015, 1511.07623.

[84]  Christopher J. Miller,et al.  Discovery of two gravitationally lensed quasars in the Dark Energy Survey , 2015, 1508.01203.

[85]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[86]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[87]  C. Lintott,et al.  Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.

[88]  A. M. Swinbank,et al.  Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ∼100 pc scales at 1 < z < 4 , 2015, 1503.07873.

[89]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[90]  Brandon C. Kelly,et al.  Data mining for gravitationally lensed quasars , 2014, 1410.4565.

[91]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[92]  M. Auger,et al.  The CASSOWARY spectroscopy survey: A new sample of gravitationally lensed galaxies in SDSS , 2013, 1302.2663.

[93]  S. Dye,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.

[94]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[95]  Jin-lin Han,et al.  Lensing clusters of galaxies in the SDSS-III , 2011, 1108.0494.

[96]  U. Utah,et al.  Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.

[97]  D. Sluse,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars , 2010, 1007.3142.

[98]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[99]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[100]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[101]  L. Koopmans,et al.  Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function , 2009, 0903.4752.

[102]  M. Bernardi,et al.  The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.

[103]  Cambridge,et al.  Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.

[104]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[105]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[106]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .

[107]  T. O. S. University,et al.  X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080 , 2008, 0802.1210.

[108]  T. Treu,et al.  Two-dimensional kinematics of SLACS lenses – I. Phase-space analysis of the early-type galaxy SDSS J2321−097 at z≈ 0.1 , 2007, 0711.0888.

[109]  D. Sluse,et al.  Multi-wavelength study of the gravitational lens system RXS J1131-1231 III. Long slit spectroscopy: micro-lensing probes the QSO structure ⋆ , 2007, astro-ph/0703030.

[110]  P. Hall,et al.  A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample , 2007, astro-ph/0701383.

[111]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[112]  Gepi,et al.  The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.

[113]  Huan Lin,et al.  A NEW SURVEY FOR GIANT ARCS , 2006, astro-ph/0610061.

[114]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[115]  UCLA,et al.  The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.

[116]  M. Oguri The image separation distribution of strong lenses: halo versus subhalo populations , 2005, astro-ph/0508528.

[117]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[118]  N. Dalal,et al.  What are the environments of lens galaxies , 2004, astro-ph/0409483.

[119]  F. Courbin,et al.  A quadruply imaged quasar with an optical Einstein ring candidate: 1RXS J113155.4–123155 , 2003, astro-ph/0307345.

[120]  R. Beaton,et al.  Calibration of the Tip of the Red Giant Branch , 2003, The Astrophysical Journal.

[121]  P. Schechter,et al.  External Shear in Quadruply Imaged Lens Systems , 2002, astro-ph/0209532.

[122]  Astronomy,et al.  The Stellar Velocity Dispersion of the Lens Galaxy in MG 2016+112 at z = 1.004 , 2002, astro-ph/0201017.

[123]  C. Kochanek The implications of lenses for galaxy structure , 1991 .

[124]  B. Paczyński Giant luminous arcs discovered in two clusters of galaxies , 1987, Nature.

[125]  D. Walsh,et al.  0957 + 561 A, B: twin quasistellar objects or gravitational lens? , 1979, Nature.

[126]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[127]  The A.A.M.C. , 1916 .

[128]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.