Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
暂无分享,去创建一个
Miguel Ángel Martínez | J. Frieman | A. Rosell | K. Honscheid | D. Nidever | B. Santiago | Peter Melchior | D. Sluse | M. Kind | R. Gruendl | A. Palmese | M. Pereira | I. Sevilla-Noarbe | T. Abbott | D. Brooks | D. Burke | J. Carretero | S. Desai | P. Doel | A. Drlica-Wagner | B. Flaugher | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | F. Menanteau | R. Miquel | A. Romer | V. Scarpine | M. Smith | E. Suchyta | B. Yanny | J. Garc'ia-Bellido | J. Dietrich | A. Zenteno | M. Aguena | K. Glazebrook | E. Tollerud | S. Hinton | J. Vicente | R. Morgan | M. Costanzi | S. Birrer | A. Shajib | S. Everett | C. Bom | J. L. N. Castellón | A. Verma | Y. Gordon | S. Bocquet | J. Prat | J. Poh | N. Kuropatkin | E. Sanchez | M. Rodríguez-Monroy | A. Pace | P. Ferguson | A. Pieres | I. Ferrero | C. To | M. C. Kind | A. C. Rosell | N. Weaverdyck | F. Andrade-Oliveira | N. Noel | W. Cerny | O. Alves | B. Mutlu-Pakdil | L. Santana-Silva | D. Friedel | J. Marshall | J. Mena-Fern'andez | C. E. Mart'inez-V'azquez | S. Mau | K. Olsen | J. Sakowska | J. F. Wu | E. Zaborowski | J. Garc'ia-Bellido | F. Paz-Chinch'on | A. A. P. Malag'on | A. Riley | J. Carballo-Bello | Y. Choi | V. Manwadkar | L. Buckley-Geer | S. J. G. Lozano | H. Lin | F. Ashmead | J. O'Donnell | C. Y. Tan | N. E. D. Noel | E. Zaborowski | John F. Wu
[1] S. Kruk,et al. Hubble Asteroid Hunter. II. Identifying strong gravitational lenses in HST images with crowdsourcing , 2022, Astronomy & Astrophysics.
[2] J. Frieman,et al. STRIDES: Automated uniform models for 30 quadruply imaged quasars , 2022, 2206.04696.
[3] E. Linder,et al. Double source lensing probing high redshift cosmology , 2022, Journal of Cosmology and Astroparticle Physics.
[4] Tianmeng Zhang,et al. Photometric Redshifts and Galaxy Clusters for DES DR2, DESI DR9, and HSC-SSP PDR3 Data , 2022, Research in Astronomy and Astrophysics.
[5] D. Gerdes,et al. The DECam Local Volume Exploration Survey Data Release 2 , 2022, The Astrophysical Journal Supplement Series.
[6] K. C. Wong,et al. Survey of Gravitationally lensed objects in HSC Imaging (SuGOHI). VIII. New galaxy-scale lenses from the HSC SSP , 2022, Publications of the Astronomical Society of Japan.
[7] M. Makler,et al. Developing a Victorious Strategy to the Second Strong Gravitational Lensing Data Challenge , 2022, Monthly notices of the Royal Astronomical Society.
[8] S. Suyu,et al. HOLISMOKES. VIII. High-redshift, strong-lens search in the Hyper Suprime-Cam Subaru Strategic Program , 2022, Astronomy & Astrophysics.
[9] B. Weiner,et al. Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties , 2021, The Astrophysical Journal.
[10] C. Dvorkin,et al. Substructure detection reanalyzed: dark perturber shown to be a line-of-sight halo , 2021, Monthly Notices of the Royal Astronomical Society.
[11] Ny,et al. The Dark Energy Survey Bright Arcs Survey: Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey 5000 Square Degree Footprint , 2021, The Astrophysical Journal Supplement Series.
[12] Z. Lukic,et al. Mining for Strong Gravitational Lenses with Self-supervised Learning , 2021, The Astrophysical Journal.
[13] F. Courbin,et al. Search of strong lens systems in the Dark Energy Survey using convolutional neural networks , 2021, Astronomy & Astrophysics.
[14] Y. Shu,et al. HOLISMOKES , 2021, Astronomy & Astrophysics.
[15] D. Nidever,et al. The DECam Local Volume Exploration Survey: Overview and First Data Release , 2021, The Astrophysical Journal Supplement Series.
[16] Simon Birrer,et al. deeplenstronomy: A dataset simulation package for strong gravitational lensing , 2021, J. Open Source Softw..
[17] D. Gerdes,et al. The Dark Energy Survey Data Release 2 , 2021, The Astrophysical Journal Supplement Series.
[18] S. Djorgovski,et al. Gaia GraL: Gaia DR2 Gravitational Lens Systems. VI. Spectroscopic Confirmation and Modeling of Quadruply Imaged Lensed Quasars , 2020, The Astrophysical Journal.
[19] J. Zinn,et al. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM , 2020, 2012.08534.
[20] A. Stark,et al. COOL-LAMPS. I. An Extraordinarily Bright Lensed Galaxy at Redshift 5.04 , 2020, The Astrophysical Journal.
[21] D. Gerdes,et al. Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology , 2020, The Astrophysical Journal Supplement Series.
[22] U. M. Noebauer,et al. HOLISMOKES , 2020, Astronomy & Astrophysics.
[23] T. Treu,et al. TDCOSMO V: strategies for precise and accurate measurements of the Hubble constant with strong lensing , 2020, 2008.06157.
[24] J. Kneib,et al. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a catalogue of strong galaxy–galaxy lens candidates , 2020, 2007.09006.
[25] J. Frieman,et al. TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles , 2020, 2007.02941.
[26] K. Lee,et al. Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI) – VII. Discovery and confirmation of three strongly lensed quasars† , 2020, Monthly Notices of the Royal Astronomical Society.
[27] L. Kewley,et al. Spatial Variation in Strong Line Ratios and Physical Conditions in Two Strongly Lensed Galaxies at z ∼ 1.4 , 2020, The Astrophysical Journal.
[28] A. Myers,et al. Discovering New Strong Gravitational Lenses in the DESI Legacy Imaging Surveys , 2020, The Astrophysical Journal.
[29] L. Leal-Taixé,et al. HOLISMOKES , 2020, Astronomy & Astrophysics.
[30] M. Radovich,et al. New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey , 2020, The Astrophysical Journal.
[31] Zooniverse,et al. Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI) , 2020, Astronomy & Astrophysics.
[32] M. Zwaan,et al. Giant star-forming clumps? , 2020, Monthly Notices of the Royal Astronomical Society: Letters.
[33] F. Courbin,et al. HOLISMOKES , 2020, Astronomy & Astrophysics.
[34] S. Suyu,et al. Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) – V. Group-to-cluster scale lens search from the HSC–SSP Survey , 2020, Monthly Notices of the Royal Astronomical Society.
[35] F. Courbin,et al. TDCOSMO. I. An exploration of systematic uncertainties in the inference of $H_0$ from time-delay cosmography , 2019, 1912.08027.
[36] S. Suyu,et al. Survey of Gravitationally lensed Objects in HSC Imaging (SuGOHI) , 2019, Astronomy & Astrophysics.
[37] D. Gerdes,et al. STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354 , 2019, Monthly Notices of the Royal Astronomical Society.
[38] R. Beaton,et al. The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.
[39] Stefan Hilbert,et al. H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.
[40] A. Myers,et al. Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey , 2019, The Astrophysical Journal.
[41] A. K. Qin,et al. An Extended Catalog of Galaxy–Galaxy Strong Gravitational Lenses Discovered in DES Using Convolutional Neural Networks , 2019, The Astrophysical Journal Supplement Series.
[42] C. Fassnacht,et al. SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars , 2019, Monthly Notices of the Royal Astronomical Society.
[43] K. Lee,et al. Survey of gravitationally-lensed objects in HSC imaging (SuGOHI) , 2019, Astronomy & Astrophysics.
[44] A. Riess,et al. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.
[45] S. Rodney,et al. Turning Gravitationally Lensed Supernovae into Cosmological Probes , 2019, The Astrophysical Journal.
[46] P. Schechter,et al. Even Simpler Modeling of Quadruply Lensed Quasars (and Random Quartets) Using Witt's Hyperbola , 2019, The Astrophysical Journal.
[47] R. Massey,et al. Galaxy structure with strong gravitational lensing: decomposing the internal mass distribution of massive elliptical galaxies , 2019, Monthly Notices of the Royal Astronomical Society.
[48] C. Heymans,et al. LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.
[49] A. K. Qin,et al. Finding high-redshift strong lenses in DES using convolutional neural networks , 2018, Monthly Notices of the Royal Astronomical Society.
[50] M. Auger,et al. Low-mass halo perturbations in strong gravitational lenses at redshift z ∼ 0.5 are consistent with CDM , 2018, Monthly Notices of the Royal Astronomical Society.
[51] John F. Wu,et al. Using convolutional neural networks to predict galaxy metallicity from three-colour images , 2018, Monthly Notices of the Royal Astronomical Society.
[52] M. Auger,et al. Resolving on 100 pc scales the UV-continuum in Lyman-α emitters between redshift 2 and 3 with gravitational lensing , 2018, Monthly Notices of the Royal Astronomical Society.
[53] R. McMahon,et al. Gravitationally lensed quasars inGaia– III. 22 new lensed quasars fromGaiadata release 2 , 2018, Monthly Notices of the Royal Astronomical Society.
[54] D. Gerdes,et al. Erratum: Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars , 2018, Monthly Notices of the Royal Astronomical Society.
[55] S. Djorgovski,et al. Gaia GraL: Gaia DR2 gravitational lens systems , 2018, Astronomy & Astrophysics.
[56] Emmanuel Bertin,et al. Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.
[57] A. Agnello,et al. Quasar lenses in the south: searches over the DES public footprint , 2018, Monthly Notices of the Royal Astronomical Society.
[58] Adam D. Myers,et al. Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.
[59] A. Bolton,et al. Prediction of Supernova Rates in Known Galaxy–Galaxy Strong-lens Systems , 2018, The Astrophysical Journal.
[60] M. Meneghetti,et al. The strong gravitational lens finding challenge , 2018, Astronomy & Astrophysics.
[61] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[62] B. Yanny,et al. The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.
[63] T. Treu,et al. Probing the nature of dark matter by forward modelling flux ratios in strong gravitational lenses , 2017, Monthly Notices of the Royal Astronomical Society.
[64] M Soares-Santos,et al. DES meets Gaia: discovery of strongly lensed quasars from a multiplet search , 2017, Monthly Notices of the Royal Astronomical Society.
[65] A. Bolton,et al. The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses , 2017, 1711.00072.
[66] Sergey E. Koposov,et al. Gravitationally lensed quasars in Gaia: I. Resolving small-separation lenses , 2017, 1709.08976.
[67] Daniel Thomas,et al. The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations , 2017 .
[68] A. Bolton,et al. The BOSS Emission-line Lens Survey. V. Morphology and Substructure of Lensed Lyα Emitters at Redshift Z ≈ 2.5 in the BELLS GALLERY , 2017, 1708.08854.
[69] Laurence Perreault Levasseur,et al. Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.
[70] T. Collett,et al. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.
[71] J. Rigby,et al. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales , 2017, The astrophysical journal. Letters.
[72] C. Rusu,et al. Discovery of the First Quadruple Gravitationally Lensed Quasar Candidate with Pan-STARRS , 2017, 1705.08359.
[73] Research Center for the Early Universe,et al. Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses , 2017, 1704.01585.
[74] N. R. Napolitano,et al. Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.
[75] A. Amara,et al. Lensing substructure quantification in RXJ1131-1231: a 2 keV lower bound on dark matter thermal relic mass , 2017, 1702.00009.
[76] A. Bolton,et al. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE , 2016, 1608.08707.
[77] M. Makler,et al. A neural network gravitational arc finder based on the Mediatrix filamentation method , 2016, 1607.04644.
[78] G. Meylan,et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.
[79] G. Meylan,et al. H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.
[80] P. Marshall,et al. Time delay cosmography , 2016, The Astronomy and Astrophysics Review.
[81] Gary M. Bernstein,et al. Limiting Magnitude, τ, teff, and Image Quality in DES Year 1 , 2016 .
[82] G. Bruzual,et al. Strong gravitational lensing and the stellar IMF of early-type galaxies , 2015, 1512.00462.
[83] J. Vicente,et al. DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting , 2015, 1511.07623.
[84] Christopher J. Miller,et al. Discovery of two gravitationally lensed quasars in the Dark Energy Survey , 2015, 1508.01203.
[85] T. Collett. THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.
[86] Edwin Simpson,et al. Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.
[87] C. Lintott,et al. Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.
[88] A. M. Swinbank,et al. Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ∼100 pc scales at 1 < z < 4 , 2015, 1503.07873.
[89] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[90] Brandon C. Kelly,et al. Data mining for gravitationally lensed quasars , 2014, 1410.4565.
[91] Robert Armstrong,et al. GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..
[92] M. Auger,et al. The CASSOWARY spectroscopy survey: A new sample of gravitationally lensed galaxies in SDSS , 2013, 1302.2663.
[93] S. Dye,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131−1231 , 2012, 1208.6009.
[94] J. P. McKean,et al. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.
[95] Jin-lin Han,et al. Lensing clusters of galaxies in the SDSS-III , 2011, 1108.0494.
[96] U. Utah,et al. Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 , 2011, 1102.2261.
[97] D. Sluse,et al. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars , 2010, 1007.3142.
[98] D. Sluse,et al. Strong Lensing by Galaxies , 2010, 1003.5567.
[99] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.
[100] A. Bolton,et al. Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.
[101] L. Koopmans,et al. Statistics of mass substructure from strong gravitational lensing: quantifying the mass fraction and mass function , 2009, 0903.4752.
[102] M. Bernardi,et al. The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.
[103] Cambridge,et al. Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.
[104] Edinburgh,et al. Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.
[105] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[106] A. Bolton,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. V. THE FULL ACS STRONG-LENS SAMPLE 1 , 2022 .
[107] T. O. S. University,et al. X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080 , 2008, 0802.1210.
[108] T. Treu,et al. Two-dimensional kinematics of SLACS lenses – I. Phase-space analysis of the early-type galaxy SDSS J2321−097 at z≈ 0.1 , 2007, 0711.0888.
[109] D. Sluse,et al. Multi-wavelength study of the gravitational lens system RXS J1131-1231 III. Long slit spectroscopy: micro-lensing probes the QSO structure ⋆ , 2007, astro-ph/0703030.
[110] P. Hall,et al. A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample , 2007, astro-ph/0701383.
[111] J. Frieman,et al. The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.
[112] Gepi,et al. The CFHTLS strong lensing legacy survey - I. Survey overview and T0002 release sample , 2006, astro-ph/0610362.
[113] Huan Lin,et al. A NEW SURVEY FOR GIANT ARCS , 2006, astro-ph/0610061.
[114] A. Bolton,et al. The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.
[115] UCLA,et al. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies , 2005, astro-ph/0511453.
[116] M. Oguri. The image separation distribution of strong lenses: halo versus subhalo populations , 2005, astro-ph/0508528.
[117] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[118] N. Dalal,et al. What are the environments of lens galaxies , 2004, astro-ph/0409483.
[119] F. Courbin,et al. A quadruply imaged quasar with an optical Einstein ring candidate: 1RXS J113155.4–123155 , 2003, astro-ph/0307345.
[120] R. Beaton,et al. Calibration of the Tip of the Red Giant Branch , 2003, The Astrophysical Journal.
[121] P. Schechter,et al. External Shear in Quadruply Imaged Lens Systems , 2002, astro-ph/0209532.
[122] Astronomy,et al. The Stellar Velocity Dispersion of the Lens Galaxy in MG 2016+112 at z = 1.004 , 2002, astro-ph/0201017.
[123] C. Kochanek. The implications of lenses for galaxy structure , 1991 .
[124] B. Paczyński. Giant luminous arcs discovered in two clusters of galaxies , 1987, Nature.
[125] D. Walsh,et al. 0957 + 561 A, B: twin quasistellar objects or gravitational lens? , 1979, Nature.
[126] S. Refsdal. On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .
[127] The A.A.M.C. , 1916 .
[128] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.