Self-heating in a coupled thermo-electric circuit-device model

The self-heating of a coupled thermo-electric circuit-semiconductor system is modeled and numerically simulated. The system consists of semiconductor devices, an electric network with resistors, capacitors, inductors, and voltage sources, and a thermal network. The flow of the charge carriers is described by the energy-transport equations coupled to a heat equation for the lattice temperature. The electric circuit is modeled by the network equations from modified nodal analysis coupled to a thermal network describing the evolution of the temperatures in the lumped and distributed circuit elements. The three subsystems are coupled through thermo-electric, electric circuit-device, and thermal network-device interface conditions. The resulting system of nonlinear partial differential-algebraic equations is discretized in time by the 2-stage backward difference formula and in space by a mixed finite-element method. Numerical simulations of a one-dimensional ballistic diode and a frequency multiplier circuit containing a pn-junction diode illustrate the heating of the semiconductor device and circuit resistors.

[1]  Vittorio Romano,et al.  Extended Hydrodynamical Model of Carrier Transport in Semiconductors , 2000, SIAM J. Appl. Math..

[2]  Siegfried Selberherr,et al.  Mixed-mode device simulation , 2000 .

[3]  Andreas Bartel,et al.  Multirate Co-simulation of First Order Thermal Models in Electric Circuit Design , 2004 .

[4]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[5]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[6]  R. März Differential algebraic systems anew , 2002 .

[7]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Paola Pietra,et al.  New mixed finite element schemes for current continuity equations , 1990 .

[9]  M. S. Soto,et al.  Numerical analysis of DAEs from coupled circuit and semiconductor simulation , 2005 .

[10]  Ansgar Jüngel,et al.  An Adaptive Mixed Scheme for Energy-Transport Simulations of Field-Effect Transistors , 2004, SIAM J. Sci. Comput..

[11]  Uwe Feldmann Numerical Simulation of Multiscale Models for Radio Frequency Circuits in the Time Domain , 2008 .

[12]  ENERGY-TRANSPORT MODELS FOR SEMICONDUCTOR DEVICES AND THEIR COUPLING WITH ELECTRIC NETWORKS , 2007 .

[13]  Ansgar Jüngel,et al.  Numerical Coupling of Electric Circuit Equations and Energy-Transport Models for Semiconductors , 2008, SIAM J. Sci. Comput..

[14]  C. Tischendorf Modeling Circuit Systems Coupled with Distributed Semiconductor Equations , 2003 .

[15]  Shaoqiang Tang,et al.  A relaxation scheme for the hydrodynamic equations for semiconductors , 2002 .

[16]  U. Ravaioli,et al.  An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects , 1992, IEEE Electron Device Letters.

[17]  A. Yamnahakki,et al.  SECOND ORDER BOUNDARY CONDITIONS FOR THE DRIFT-DIFFUSION EQUATIONS OF SEMICONDUCTORS , 1995 .

[18]  J. M. Sellier,et al.  2D Numerical Simulation of the MEP Energy-Transport Model with a Mixed Finite Elements Scheme , 2005 .

[19]  Pierre Degond,et al.  On a hierarchy of macroscopic models for semiconductors , 1996 .

[20]  Andreas Bartel,et al.  From SOI to Abstract Electric-Thermal-1D Multiscale Modeling for First Order Thermal Effects , 2003 .

[21]  A. Jüngel Transport Equations for Semiconductors , 2009 .

[22]  Uwe Bandelow,et al.  Fabry-Perot Lasers: Thermodynamics-Based Modeling , 2005 .

[23]  Inmaculada Higueras,et al.  Differential algebraic equations with properly stated leading terms , 2004 .

[24]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[25]  M.S. Adler,et al.  Accurate calculations of the forward drop and power dissipation in thyristors , 1978, IEEE Transactions on Electron Devices.

[26]  D.H. Navon,et al.  Two-dimensional carrier flow in a transistor structure under nonisothermal conditions , 1976, IEEE Transactions on Electron Devices.

[27]  S. Selberherr,et al.  A review of hydrodynamic and energy-transport models for semiconductor device simulation , 2003, Proc. IEEE.

[28]  A. Chryssafis,et al.  A computer-aided analysis of one-dimensional thermal transients in n-p-n power transistors , 1979 .

[29]  A. Jüngel,et al.  SIMULATION OF THERMAL EFFECTS IN OPTOELECTRONIC DEVICES USING COUPLED ENERGY-TRANSPORT AND CIRCUIT MODELS , 2008 .

[30]  Ansgar Jüngel,et al.  Numerical Discretization of Energy-Transport Models for Semiconductors with Nonparabolic Band Structure , 2000, SIAM J. Sci. Comput..

[31]  Caren Tischendorf,et al.  Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation , 2003 .

[32]  Paolo Antognetti,et al.  Semiconductor Device Modeling with Spice , 1988 .

[33]  R. Lamour Index determination and calculationof consistent initial values for DAEs , 2005 .

[34]  D.K. Sharma,et al.  Modeling thermal effects on MOS I-V characteristics , 1983, IEEE Electron Device Letters.

[35]  H. Gajewski,et al.  Thermodynamic design of energy models of semiconductor devices , 2002 .

[36]  Gerhard Wachutka,et al.  Consistent Treatment of Carrier Emission and Capture Kinetics in Electrothermal and Energy Transport Models , 1995 .