Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects

[1]  Hui Zhang,et al.  Imaging brain microstructure with diffusion MRI: practicality and applications , 2019, NMR in biomedicine.

[2]  Essa Yacoub,et al.  The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds , 2018, NeuroImage.

[3]  J. Whitwell,et al.  Alzheimer's disease neuroimaging , 2018, Current opinion in neurology.

[4]  Thomas E. Nichols,et al.  Statistical Challenges in “Big Data” Human Neuroimaging , 2018, Neuron.

[5]  Stephen M. Smith,et al.  Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data , 2017, NeuroImage.

[6]  Hui Zhang,et al.  Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data , 2017, NeuroImage.

[7]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[8]  Dustin Scheinost,et al.  Influences on the Test–Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility , 2017, Cerebral cortex.

[9]  Abraham Z. Snyder,et al.  Real-time motion analytics during brain MRI improve data quality and reduce costs , 2017, NeuroImage.

[10]  B Fischl,et al.  High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas , 2017, NeuroImage.

[11]  R. Henson,et al.  Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging , 2017, Human brain mapping.

[12]  Hui Zhang,et al.  Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement , 2017, NeuroImage.

[13]  T. Paus,et al.  Studying neuroanatomy using MRI , 2017, Nature Neuroscience.

[14]  Timothy O. Laumann,et al.  Sources and implications of whole-brain fMRI signals in humans , 2017, NeuroImage.

[15]  Markus H. Sneve,et al.  Relationship between structural and functional connectivity change across the adult lifespan: A longitudinal investigation , 2017 .

[16]  Mario Pannunzi,et al.  Resting-state fMRI correlations: From link-wise unreliability to whole brain stability , 2016, NeuroImage.

[17]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[18]  Evan M. Gordon,et al.  On the Stability of BOLD fMRI Correlations , 2016, Cerebral cortex.

[19]  T. Goldberg,et al.  Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease , 2017, Neuroscience & Biobehavioral Reviews.

[20]  P. Matthews,et al.  Multimodal population brain imaging in the UK Biobank prospective epidemiological study , 2016, Nature Neuroscience.

[21]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[22]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[23]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[24]  Simon B Eickhoff,et al.  Going Beyond Finding the "Lesion": A Path for Maturation of Neuroimaging. , 2016, The American journal of psychiatry.

[25]  Bruce Fischl,et al.  Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors , 2016, NeuroImage.

[26]  M. Dylan Tisdall,et al.  Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion , 2016, NeuroImage.

[27]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[28]  Bruce R. Rosen,et al.  MGH–USC Human Connectome Project datasets with ultra-high b-value diffusion MRI , 2016, NeuroImage.

[29]  Jesper Andersson,et al.  Changes in white matter microstructure in the developing brain—A longitudinal diffusion tensor imaging study of children from 4 to 11 years of age , 2016, NeuroImage.

[30]  Robert Oostenveld,et al.  ConnectomeDB—Sharing human brain connectivity data , 2016, NeuroImage.

[31]  Daniel R Weinberger,et al.  Finding the Elusive Psychiatric "Lesion" With 21st-Century Neuroanatomy: A Note of Caution. , 2015, The American journal of psychiatry.

[32]  Chelsea C. Hays,et al.  The Utility of Cerebral Blood Flow as a Biomarker of Preclinical Alzheimer’s Disease , 2016, Cellular and Molecular Neurobiology.

[33]  Timothy E. J. Behrens,et al.  Measuring macroscopic brain connections in vivo , 2015, Nature Neuroscience.

[34]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[35]  S. Nagarajan,et al.  White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation , 2015, PloS one.

[36]  Yi Wang,et al.  Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: Implications for multi-center studies , 2015, NeuroImage.

[37]  Koenraad Van Leemput,et al.  A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI , 2015, NeuroImage.

[38]  M. Dylan Tisdall,et al.  Head motion during MRI acquisition reduces gray matter volume and thickness estimates , 2015, NeuroImage.

[39]  Steen Moeller,et al.  Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging , 2015, NeuroImage.

[40]  M. Chakravarty,et al.  Functional Consequences of Neurite Orientation Dispersion and Density in Humans across the Adult Lifespan , 2015, The Journal of Neuroscience.

[41]  Bruce Fischl,et al.  Gray matter myelination of 1555 human brains using partial volume corrected MRI images , 2015, NeuroImage.

[42]  G. Zaharchuk,et al.  Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. , 2015, Magnetic resonance in medicine.

[43]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[44]  Steen Moeller,et al.  ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging , 2014, NeuroImage.

[45]  Kawin Setsompop,et al.  Interslice leakage artifact reduction technique for simultaneous multislice acquisitions , 2014, Magnetic resonance in medicine.

[46]  Efstathios D. Gennatas,et al.  Impact of puberty on the evolution of cerebral perfusion during adolescence , 2014, Proceedings of the National Academy of Sciences.

[47]  Aart J. Nederveen,et al.  Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: A head-to-head comparison with 15O H2O positron emission tomography , 2014, NeuroImage.

[48]  H. Laufs,et al.  Decoding Wakefulness Levels from Typical fMRI Resting-State Data Reveals Reliable Drifts between Wakefulness and Sleep , 2014, Neuron.

[49]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[50]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[51]  Thomas E. Nichols,et al.  Functional connectomics from resting-state fMRI , 2013, Trends in Cognitive Sciences.

[52]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[53]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[54]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[55]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[56]  Abraham Z. Snyder,et al.  Human Connectome Project informatics: Quality control, database services, and data visualization , 2013, NeuroImage.

[57]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[58]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[59]  Noah D. Brenowitz,et al.  Integrated strategy for improving functional connectivity mapping using multiecho fMRI , 2013, Proceedings of the National Academy of Sciences.

[60]  Whitney B. Pope,et al.  Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke — Comparison with dynamic susceptibility contrast enhanced perfusion imaging☆ , 2013, NeuroImage: Clinical.

[61]  David H. Salat,et al.  The Relationship between Cortical Blood Flow and Sub-Cortical White-Matter Health across the Adult Age Span , 2013, PloS one.

[62]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[63]  Lars T. Westlye,et al.  Network-specific effects of age and in-scanner subject motion: A resting-state fMRI study of 238 healthy adults , 2012, NeuroImage.

[64]  Bruce Fischl,et al.  Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI , 2012, Magnetic resonance in medicine.

[65]  Bruce Fischl,et al.  Within-subject template estimation for unbiased longitudinal image analysis , 2012, NeuroImage.

[66]  Weiying Dai,et al.  Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging , 2012, Magnetic resonance in medicine.

[67]  B. Avants,et al.  Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. , 2012, Radiology.

[68]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.

[69]  C. Lebel,et al.  Diffusion tensor imaging of white matter tract evolution over the lifespan , 2012, NeuroImage.

[70]  Mark A. Elliott,et al.  Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth , 2012, NeuroImage.

[71]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[72]  R. Kraft,et al.  3D GRASE PROPELLER: Improved image acquisition technique for arterial spin labeling perfusion imaging , 2011, Magnetic resonance in medicine.

[73]  Bruce Fischl,et al.  Avoiding asymmetry-induced bias in longitudinal image processing , 2011, NeuroImage.

[74]  Timothy O. Laumann,et al.  Informatics and Data Mining Tools and Strategies for the Human Connectome Project , 2011, Front. Neuroinform..

[75]  David H. Salat,et al.  Age-associated reductions in cerebral blood flow are independent from regional atrophy , 2011, NeuroImage.

[76]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[77]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[78]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[79]  A. Dale,et al.  Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. , 2010, Cerebral cortex.

[80]  Matthias Günther,et al.  Separation of macrovascular signal in multi‐inversion time arterial spin labelling MRI , 2010, Magnetic resonance in medicine.

[81]  Mark W. Woolrich,et al.  Variational Bayesian Inference for a Nonlinear Forward Model , 2020, IEEE Transactions on Signal Processing.

[82]  Martin Blaimer,et al.  General formulation for quantitative G‐factor calculation in GRAPPA reconstructions , 2009, Magnetic resonance in medicine.

[83]  Catie Chang,et al.  Influence of heart rate on the BOLD signal: The cardiac response function , 2009, NeuroImage.

[84]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .

[85]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[86]  André J. W. van der Kouwe,et al.  Brain morphometry with multiecho MPRAGE , 2008, NeuroImage.

[87]  Lynne M Connelly,et al.  Accuracy and precision. , 2008, Medsurg nursing : official journal of the Academy of Medical-Surgical Nurses.

[88]  J. Detre,et al.  A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling , 2007, Magnetic resonance in medicine.

[89]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[90]  M. Tosetti,et al.  Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling , 2007, Journal of magnetic resonance imaging : JMRI.

[91]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[92]  Daniel S. Marcus,et al.  The extensible neuroimaging archive toolkit , 2007, Neuroinformatics.

[93]  Timothy R. Olsen,et al.  The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. , 2007, Neuroinformatics.

[94]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[95]  Oliver Speck,et al.  Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system , 2006, NeuroImage.

[96]  D. Feinberg,et al.  Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements , 2005, Magnetic resonance in medicine.

[97]  P. Tofts,et al.  Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects , 2004, Magnetic resonance in medicine.

[98]  F A Jolesz,et al.  Optimized single-slab three-dimensional spin-echo MR imaging of the brain. , 2000, Radiology.

[99]  S Thesen,et al.  Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI , 2000, Magnetic resonance in medicine.

[100]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[101]  S. Posse,et al.  Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging , 1999, Magnetic resonance in medicine.

[102]  Hitoshi Shinotoh,et al.  Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age , 1999, European Journal of Nuclear Medicine.

[103]  P. Hutchins,et al.  The microcirculation in experimental hypertension and aging. , 1996, Cardiovascular research.

[104]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[105]  On the Stability of , 1994 .

[106]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.

[107]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[108]  Richard S. J. Frackowiak,et al.  Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. , 1990, Brain : a journal of neurology.