Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications

In this paper, we give an overview of our results [36, 39, 46, 47] from the point of view of coarse-grid multiscale model reduction by highlighting some common issues in coarse-scale approximations and two-level preconditioners. Reduced models discussed in this paper rely on coarse-grid spaces computed by solving local spectral problems. We define local spectral problems with a weight function computed with a choice of initial multiscale basis functions. We emphasize the importance of this initial choice of multiscale basis functions for both coarse-scale approximation and for preconditioners. In particular, we discuss various choices of initial basis functions and use some of them in our simulations. We show that a naive choice of initial basis functions, e.g., piecewise linear functions, can lead to a large dimensional spaces that are needed to achieve (1) a reasonable accuracy in the coarse-scale approximation or (2) contrast-independent condition number of preconditioned matrix within two-level additive Schwarz methods. While using a careful choice of initial spaces, we can achieve (1) and (2) with smaller dimensional coarse spaces.

[1]  S. Nepomnyaschikh Mesh theorems on traces, normalizations of function traces and their inversion , 1991 .

[2]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[3]  Yalchin Efendiev,et al.  An adaptive local–global multiscale finite volume element method for two-phase flow simulations , 2007 .

[4]  Antoine Gloria,et al.  Reduction of the resonance error---Part 1: Approximation of homogenized coefficients , 2011 .

[5]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[6]  George Papanicolaou,et al.  A Framework for Adaptive Multiscale Methods for Elliptic Problems , 2008, Multiscale Model. Simul..

[7]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[8]  T. Hou,et al.  Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios , 2002 .

[9]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[10]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[11]  Yalchin Efendiev,et al.  Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems , 2010, Multiscale Model. Simul..

[12]  Ivan G. Graham,et al.  Energy Minimizing Coarse Spaces for Two-level Schwarz Methods for Multiscale Pdes , 2008 .

[13]  Panayot S. Vassilevski Coarse Spaces by Algebraic Multigrid: Multigrid convergence and Upscaling Error Estimates , 2011, Adv. Data Sci. Adapt. Anal..

[14]  Louis J. Durlofsky,et al.  Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques , 1998 .

[15]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[16]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[17]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[18]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[19]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[20]  A. Brandt,et al.  Multiscale solvers and systematic upscaling in computational physics , 2005, Comput. Phys. Commun..

[21]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[22]  Gabriel Wittum,et al.  A Coarsening Multigrid Method for Flow in Heterogeneous Porous Media , 2005 .

[23]  Yalchin Efendiev,et al.  Spectral Element Agglomerate Algebraic Multigrid Methods for Elliptic Problems with High-Contrast Coefficients , 2011 .

[24]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[25]  ZHANGXIN CHEN,et al.  Analysis of the Multiscale Finite Element Method for Nonlinear and Random Homogenization Problems , 2007, SIAM J. Numer. Anal..

[26]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[27]  Grégoire Allaire,et al.  A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..

[28]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[29]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[30]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[31]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[32]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[33]  Louis J. Durlofsky,et al.  Adaptive Local–Global Upscaling for General Flow Scenarios in Heterogeneous Formations , 2006 .

[34]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[35]  Richard B. Lehoucq,et al.  SPECIAL FINITE ELEMENT METHODS BASED ON COMPONENT MODE SYNTHESIS TECHNIQUES. , 2009 .

[36]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[37]  Sabine Attinger,et al.  Coarse Graining for Upscaling of Flow in Heterogeneous Porous Media , 2004, Multiscale Model. Simul..

[38]  S. V. NEPOMNYASCHIKH Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains , 1991 .

[39]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[40]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[41]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[42]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[43]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[44]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[45]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[46]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[47]  Bradley T. Mallison,et al.  Accurate local upscaling with variable compact multipoint transmissibility calculations , 2008 .

[48]  Y. Efendiev,et al.  A Domain Decomposition Preconditioner for Multiscale High-Contrast Problems , 2011 .

[49]  Antoine Gloria,et al.  An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..

[50]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[51]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[52]  Patrick Jenny,et al.  Multiscale finite-volume method for compressible multiphase flow in porous media , 2006, J. Comput. Phys..

[53]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[54]  H. Owhadi,et al.  Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast , 2009, 0901.1463.

[55]  H. Owhadi,et al.  Metric based up-scaling , 2005, math/0505223.

[56]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[57]  J. David Moulton,et al.  A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..

[58]  Robert D. Falgout,et al.  Spectral Element Agglomerate AMGe , 2007 .

[59]  Mary F. Wheeler,et al.  Mortar coupling and upscaling of pore-scale models , 2008 .

[60]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[61]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[62]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[63]  Margot Gerritsen,et al.  MODELING FLUID FLOW IN OIL RESERVOIRS , 2005 .

[64]  Patrick Jenny,et al.  The Multiscale Finite Volume Method: A flexible tool to model physically complex flow in porous media , 2006 .

[65]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[66]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[67]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[68]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[69]  Ivo Babuška,et al.  Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions , 2008 .

[70]  Alexei Novikov,et al.  Error of the Network Approximation for Densely Packed Composites with Irregular Geometry , 2002, SIAM J. Math. Anal..

[71]  Pingwen Zhang,et al.  Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..

[72]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[73]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[74]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[75]  Victor M. Calo,et al.  A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms , 2011 .

[76]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[77]  Andrey L. Piatnitski,et al.  Approximations of Effective Coefficients in Stochastic Homogenization , 2002 .

[78]  Yalchin Efendiev,et al.  Mixed multiscale finite element methods using approximate global information based on partial upscaling , 2010 .

[79]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[80]  Jan M. Nordbotten,et al.  Adaptive Variational Multiscale Methods for Multiphase Flow in Porous Media , 2009, Multiscale Model. Simul..

[81]  M. Sarkis Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements , 1997 .