Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets☆

The close approach to the Earth of Comet C/1996 B2 (Hyakutake) in March 1996 allowed searches for minor volatile species outgassed from the nucleus. We report the detection of deuterated water (HDO) through its 101–000rotational transition at 464.925 GHz using the Caltech Submillimeter Observatory. We also present negative results of a sensitive search for theJ(5–4) line of deuterated hydrogen cyanide (DCN) at 362.046 GHz. Simultaneous observations of two rotational lines of methanol together with HDO in the same spectrum allow us to determine the average gas temperature within the telescope beam to be 69 ± 10 K. We are thus able to constrain the excitation conditions in the inner coma and determine reliably the HDO production rate as (1.20 ± 0.28) × 1026s−1on March 23–24, 1996. Available IR, UV, and radio measurements led to a water production rate of (2.1 ± 0.5) × 1029s−1at the time of our HDO observations. The resulting D/H ratio in cometary water is thus (29 ± 10) × 10−5, in good agreement with the values of (30.8+3.8−5.3) × 10−5(H. Balsigeret al., 1995,J. Geophys. Res.100, 5827–5834). and (31.6 ± 3.4) × 10−5(P. Eberhardet al., 1995,Astron. Astrophys.302, 301–316) determined in Comet P/Halley fromin situion mass spectra. The inferred 3σ upper limit for the D/H ratio in HCN is 1%. Deuterium abundance is a key parameter for studying the origin and the early evolution of the Solar System and of its individual bodies. Our HDO measurement confirms that, in cometary water, deuterium is enriched by a factor of at least 10 relative to the protosolar ratio, namely the D/H ratio in H2in the primitive Solar Nebula which formed from the collapse of the protosolar cloud. This indicates that cometary water has preserved a major part of the high D/H ratio acquired in this protosolar cloud through ion–molecule isotopic exchanges or grain-surface reactions and was not re-equilibrated with H2in the Solar Nebula. However, there are strong presumptions that interstellar grains were partly mixed in the early nebula prior to cometary formation with water reprocessed in the warm inner part of the nebula and transported by turbulent diffusion. Scenarios of formation of comets consistent with these results are discussed.

[1]  A. Lacis,et al.  Tropospheric gas composition and cloud structure of the Jovian North Equatorial Belt , 1993 .

[2]  T. Owen,et al.  Monodeuterated Methane in the Outer Solar System. II. Its Detection on Uranus at 1.6 Microns , 1985 .

[3]  N. Biver Molecules meres cometaires : observations et modelisations , 1997 .

[4]  U. Fink,et al.  Spectrophotometry and the Development of Emissions for C/1996 B2 (Comet Hyakutake) , 1997 .

[5]  W. Hubbard,et al.  Theoretical predictions of deuterium abundances in the Jovian planets , 1980 .

[6]  Keith S. Noll,et al.  The spectrum of Saturn from 1990 to 2230 cm−1 ; Abundances of AsH3, CH3D, CO, GeH4, NH3, and PH3 , 1991 .

[7]  A. Tielens Surface chemistry of deuterated molecules , 1983 .

[8]  J. M. Greenberg,et al.  What are comets made of - A model based on interstellar dust , 1982 .

[9]  T. Encrenaz,et al.  First results of ISO-SWS observations of Jupiter , 1996 .

[10]  J. Linsky,et al.  Deuterium and the Local Interstellar Medium: Properties for the Procyon and Capella Lines of Sight , 1995 .

[11]  William E. Blass,et al.  Thermal spectroscopy of Neptune: the stratospheric temperature, hydrocarbon abundances, and isotopic ratios , 1992 .

[12]  T. Guillot,et al.  New Constraints on the Composition of Jupiter from Galileo Measurements and Interior Models , 1997, astro-ph/9707210.

[13]  T. Owen,et al.  Deuterium in the outer Solar System: evidence for two distinct reservoirs , 1986, Nature.

[14]  E. Bergin,et al.  The Postshock Chemical Lifetimes of Outflow Tracers and a Possible New Mechanism to Produce Water Ice Mantles , 1998, astro-ph/9803330.

[15]  J. Crovisier Photodestruction rates for cometary parent molecules , 1994 .

[16]  J. Lunine,et al.  Sublimation and reformation of icy grains in the primitive solar nebula , 1991 .

[17]  Alberto Cellino,et al.  Asteroids, Comets, Meteors 1993 , 1994 .

[18]  D. Gautier,et al.  Deuterium enrichment in giant planets , 1996 .

[19]  F. Robert,et al.  Hydrogen isotope exchange reaction rates: Origin of water in the inner solar system , 1994 .

[20]  W. Irvine,et al.  THE CHEMISTRY OF INTERSTELLAR GAS AND GRAINS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[21]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[22]  H. Balsiger,et al.  D/H and 18 O/ 16 O Ratio in the Hydronium Ion and in Neutral Water from in Situ Ion Measurements in Comet Halley , 1995 .

[23]  B. Dubrulle Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula , 1993 .

[24]  M. Berthé,et al.  LYMAN-ALPHA OBSERVATIONS OF COMET HYAKUTAKE WITH SWAN ON SOHO , 1998 .

[25]  S. Weidenschilling,et al.  The Origin of Comets in the Solar Nebula: A Unified Model , 1997 .

[26]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[27]  W. Ip,et al.  Dynamical evolution of a cometary swarm in the outer planetary region , 1981 .

[28]  P. Morel,et al.  A Reestimate of the Protosolar (^2^H/^1^H)_p_ ratio from (^3^He/^4^He)_SW_ solar wind measurements. , 1997 .

[29]  T. Encrenaz,et al.  FIRST DETECTION OF THE 56-MU M ROTATIONAL LINE OF HD IN SATURN'S ATMOSPHERE , 1996 .

[30]  C. Kaminski,et al.  Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin , 1996, Science.

[31]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[32]  Daviaud,et al.  Subcritical transition to turbulence in plane Couette flow. , 1992, Physical review letters.

[33]  Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars , 1993 .

[34]  W. Ip,et al.  Orbital expansion and resonant trapping during the late accretion stages of the outer planets , 1996 .

[35]  T. Owen,et al.  A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). , 1998, Science.

[36]  R. Cook,et al.  Millimeter and Submillimeter Wave Rotational Spectrum and Centrifugal Distortion Effects of HDO , 1971 .

[37]  C. Walmsley,et al.  Deuterated water and ammonia in hot cores , 1990 .

[38]  T. Owen,et al.  Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN. , 1998, Science.

[39]  S. Tremaine,et al.  The Formation and Extent of the Solar System Comet Cloud , 1987 .

[40]  W. Ip,et al.  Ion composition and dynamics at comet Halley , 1986 .

[41]  J. Lunine,et al.  Origins of outer-planet satellites , 1993 .

[42]  Noelle A. Scott,et al.  Management and study of spectroscopic information: The GEISA program , 1992 .

[43]  J. Linsky,et al.  The Properties of the Local Interstellar Medium and the Interaction of the Stellar Winds of epsilon INDI and lambda Andromedae with the Interstellar Environment , 1996 .

[44]  B. Dubrulle,et al.  The Dust Subdisk in the Protoplanetary Nebula , 1995 .

[45]  T. Millar,et al.  Models of the gas-grain interaction. Deuterium chemistry. , 1989 .

[46]  N. Biver,et al.  Observations of the OH radical in comet C/1996 B2 (Hyakutake) with the Nançay radio telescope , 1998 .

[47]  P. Bodenheimer,et al.  THEORIES OF THE ORIGIN AND EVOLUTION OF THE GIANT PLANETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[48]  Matthew Joseph Griffin,et al.  First results of ISO-SWS observations of Saturn: detection of CO_2_, CH_3_C_2_H, C_4_H_2_ and tropospheric H_2_O. , 1997 .

[49]  R. Plambeck,et al.  Fossil DCN in Orion-KL , 1991 .

[50]  T. Owen,et al.  Spectroscopic evidence for interstellar ices in comet Hyakutake , 1996, Nature.

[51]  K. Baines,et al.  The D/H ratio for Jupiter , 1989 .

[52]  F. Robert,et al.  Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system , 1998 .

[53]  Eric Herbst,et al.  DEUTERIUM FRACTIONATION IN DENSE INTERSTELLAR CLOUDS , 1989 .

[54]  T. Owen,et al.  Comets, impacts, and atmospheres. , 1995, Icarus.

[55]  M. S. Matthews,et al.  Planetary Science. (Book Reviews: Origin and Evolution of Planetary and Satellite Atmospheres) , 1989 .

[56]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[57]  A. Wootten Deuterated Molecules in Interstellar Clouds , 1987 .

[58]  Li-Hong Xu,et al.  Microwave Spectra of Molecules of Astrophysical Interest. XXIV: Methanol (CH3OH and 13CH3OH) , 1997 .

[59]  Jeffrey L. Linsky,et al.  Local Interstellar Medium Properties and Deuterium Abundances for the Lines of Sight toward HR 1099, 31 Comae, β Ceti, and β Cassiopeiae , 1997 .

[60]  S. Beckwith,et al.  The occurrence and properties of disks around young stars , 1993 .

[61]  A. Cochran,et al.  Observational Constraints on the Lifetime of Cometary H2O , 1993 .

[62]  W. D. Watson Ion-Molecule Reactions, Molecule Formation, and Hydrogen-Isotope Exchange in Dense Interstellar Clouds , 1974 .

[63]  E. Bergin,et al.  Spectroscopic Observations of Comet C/1996 B2 (Hyakutake) with the Caltech Submillimeter Observatory , 1997 .

[64]  Emmanuel Lellouch,et al.  The Spectrum of Comet Hale-Bopp (C/1995 O1) Observed with the Infrared Space Observatory at 2.9 Astronomical Units from the Sun , 1997, Science.

[65]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[66]  K. Baines,et al.  D/H for Uranus and Neptune , 1989 .

[67]  D. Hunten,et al.  The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere , 1996, Science.

[68]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[69]  S. Lederer,et al.  Activity and the Rotation Period of Comet Hyakutake (1996 B2) , 1998 .

[70]  J. Lunine,et al.  Protostars and planets III , 1993 .

[71]  B. Dubrulle,et al.  Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation , 1999 .

[72]  W. Mook,et al.  Determination of the Absolute Hydrogen Isotopic Ratio of V‐SMOW and SLAP , 1980 .

[73]  J. Lissauer,et al.  Formation of the Neptune system , 1995 .

[74]  J. Crovisier Rotational and vibrational synthetic spectra of linear parent molecules in comets , 1987 .

[75]  S. A. Stern,et al.  Comets and the origin of the solar system - Reading the Rosetta Stone , 1993 .

[76]  T. Owen,et al.  Monodeuterated methane in the outer solar system. IV. Its detection and abundance on Neptune. , 1990, The Astrophysical journal.

[77]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[78]  F. Helmich,et al.  THE EXCITATION AND ABUNDANCE OF HDO TOWARD W3(OH)/(H2O) , 1996 .

[79]  Water in galactic hot cores. , 1996 .

[80]  D. Bockelée-Morvan A model for the excitation of water in comets , 1987 .

[81]  J. Geiss,et al.  COSMIC AND SOLAR SYSTEM ABUNDANCES OF DEUTERIUM AND $sup 3$He. , 1972 .

[82]  M. Hanner,et al.  The 8-13 micron spectra of comets and the composition of silicate grains , 1994 .