Expanding the Trichoderma harzianum species complex: Three new species from Argentine natural and cultivated ecosystems

ABSTRACT A study was performed on a collection of 84 isolates from decaying plant tissues and soils in Argentina previously identified as Trichoderma harzianum. Based on multiple phenotypic characters and multilocus phylogenetic analyses, 10 species were distinguished, three of which are described as new species: T. austroindianum, T. hortense, and T. syagri. Among the remaining seven identified species, the following five can be added to the Argentine mycobiota: T. afarasin, T. afroharzianum, T. endophyticum, T. guizhouense, and T. neotropicale. Trichoderma afroharzianum and T. endophyticum were the most frequent species found in the samples. In addition, a collection of isolates previously identified as T. harzianum with antagonistic abilities were reidentified as T. afroharzianum, thus highlighting the importance of correct identification of biocontrol species.

[1]  Irina S Druzhinina,et al.  In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma , 2021, Fungal Diversity.

[2]  Giovanna Marta Fusco,et al.  Application of Trichoderma harzianum, 6-Pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes , 2020, Plants.

[3]  F. Araniti,et al.  Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent , 2020, Plants.

[4]  M. Stocco,et al.  Coinoculation of soybean plants with Bradyrhizobium japonicum and Trichoderma harzianum: Coexistence of both microbes and relief of nitrate inhibition of nodulation , 2020, Biotechnology reports.

[5]  P. Zapata,et al.  Trichoderma en la Argentina: Estado del arte , 2020 .

[6]  M. C. Valadares-Inglis,et al.  Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi , 2020, PloS one.

[7]  Yanli Wei,et al.  Large-scale Trichoderma diversity was associated with ecosystem, climate and geographic location. , 2020, Environmental microbiology.

[8]  P. Moya,et al.  New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophora teres-barley in Argentina , 2020 .

[9]  B. Henrissat,et al.  Evolution and comparative genomics of the most common Trichoderma species , 2019, BMC Genomics.

[10]  Khalid Ali Khan,et al.  Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. , 2019, Microbial pathogenesis.

[11]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[12]  O. Yarden,et al.  The diversity of Trichoderma species from soil in South Africa, with five new additions , 2018, Mycologia.

[13]  Stacy Ciufo,et al.  Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case , 2017, Database J. Biol. Databases Curation.

[14]  Kai Chen,et al.  Discovery from a large-scaled survey of Trichoderma in soil of China , 2017, Scientific Reports.

[15]  P. Folgarait,et al.  Trichoderma species associated with Acromyrmex ant nests from Argentina and first report of Trichoderma lentiforme for the country , 2017 .

[16]  P. Folgarait,et al.  Especies de Trichoderma asociadas con nidos de hormigas del género Acromyrmex en Argentina y primer registro de Trichoderma lentiforme para el país , 2017 .

[17]  L. Noblick A revision of the genus Syagrus (Arecaceae) , 2017 .

[18]  M. Stocco,et al.  Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat , 2016, World Journal of Microbiology and Biotechnology.

[19]  J. Chełkowski,et al.  Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization , 2015, Journal of Applied Genetics.

[20]  W. Gams,et al.  Accepted Trichoderma names in the year 2015 , 2015, IMA fungus.

[21]  V. Barrera,et al.  Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils in Argentina, and their abilities to detoxify in vitro metsulfuron methyl , 2015 .

[22]  M. C. Sosa,et al.  Biocontrol con Trichoderma spp. de Fusarium oxysporum causal del “mal de almácigos” en pre y post emergencia en cebolla , 2015 .

[23]  A. Rodrigues,et al.  Unraveling Trichoderma species in the attine ant environment: description of three new taxa , 2015, Antonie van Leeuwenhoek.

[24]  R. Gazis,et al.  Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains , 2015, Mycologia.

[25]  H. Voglmayr,et al.  Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia , 2015, Studies in mycology.

[26]  Jessica Fernanda Hoffmann,et al.  Butia spp. (Arecaceae): An overview , 2014 .

[27]  G. Samuels,et al.  EVOLUTION OF HABITAT PREFERENCE AND NUTRITION MODE IN A COSMOPOLITAN FUNGAL GENUS WITH EVIDENCE OF INTERKINGDOM HOST JUMPS AND MAJOR SHIFTS IN ECOLOGY , 2013, Evolution; international journal of organic evolution.

[28]  K. Hyde,et al.  A novel Trichoderma species isolated from soil in Guizhou, T. guizhouense , 2013, Mycological Progress.

[29]  Irina S Druzhinina,et al.  Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma , 2012, Fungal genetics and biology : FG & B.

[30]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[31]  W. Jaklitsch European species of Hypocrea part II: species with hyaline ascospores , 2011, Fungal Diversity.

[32]  Irina S Druzhinina,et al.  Clonal Species Trichoderma parareesei sp. nov. Likely Resembles the Ancestor of the Cellulase Producer Hypocrea jecorina/T. reesei , 2010, Applied and Environmental Microbiology.

[33]  Irina S Druzhinina,et al.  The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages , 2010, BMC Evolutionary Biology.

[34]  S. Orduz,et al.  Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. , 2009, Fungal genetics and biology : FG & B.

[35]  M. Cabello,et al.  DIVERSITY OF SAPROTROPHIC ANAMORPHIC ASCOMYCETES FROM NATIVE FORESTS IN ARGENTINA: AN UPDATED REVIEW , 2009 .

[36]  K. Kobayashi,et al.  Effect of soil solarization and biocontrol agents on plant stand and yield on table beet in Córdoba (Argentina) , 2008 .

[37]  John Bissett,et al.  An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. , 2005, Fungal genetics and biology : FG & B.

[38]  A. M. Ribichich El modelo clásico de la fitogeografía de argentina: un análisis crítico , 2002 .

[39]  O. Petrini,et al.  Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus , 2002 .

[40]  R. Lumsden,et al.  Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen , 2000 .

[41]  Ignazio Carbone,et al.  A method for designing primer sets for speciation studies in filamentous ascomycetes , 1999 .

[42]  C. Lawrence,et al.  Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[44]  H. Tanaka,et al.  Application of the random amplified polymorphic DNA using the polymerase chain reaction for efficient elimination of duplicate strains in microbial screening. III. Bacteria. , 1994, The Journal of antibiotics.

[45]  J. Bissett A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum , 1991 .

[46]  J. J. Burgos,et al.  The Climates of the Argentine Retublic According to the New Thornthmaite Classification , 1951 .

[47]  M. Nieto-Jacobo,et al.  Trichoderma down under: species diversity and occurrence of Trichoderma in New Zealand , 2016, Australasian Plant Pathology.

[48]  Jon Lorsch,et al.  Sanger dideoxy sequencing of DNA. , 2013, Methods in enzymology.

[49]  I. Chet,et al.  Plant-beneficial effects of Trichoderma and of its genes. , 2012, Microbiology.

[50]  W. Jaklitsch European species of Hypocrea Part I. The green-spored species , 2009, Studies in mycology.

[51]  M. Ryan,et al.  Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. , 2007, Methods in molecular biology.

[52]  O. Petrini,et al.  The Trichoderma koningii aggregate species , 2006, Studies in mycology.

[53]  G. Samuels,et al.  Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. , 2003 .

[54]  Walter Gams,et al.  Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. , 2002, Mycologia.

[55]  K. Kobayashi,et al.  Yield response of lettuce and potato to bacterial and fungal inoculants under field conditions in Córdoba (Argentina) , 2001 .

[56]  V. Catania,et al.  Micromicetes asociados con corteza y/o madera de Podocarpus parlatorei Pilg. en la Argentina , 2001 .

[57]  Noel H. Holmgren,et al.  Index Herbariorum: A global directory of public herbaria and associated staff , 1998 .

[58]  T. Okuda,et al.  Application of the random amplified polymorphic DNA using the polymerase chain reaction for efficient elimination of duplicate strains in microbial screening. II. Actinomycetes. , 1994, The Journal of antibiotics.

[59]  C. Spegazzini Plantae novae nonnullae Americae australis , 1901 .