Kinase domain activation through gene rearrangement in multiple myeloma

[1]  H. Goldschmidt,et al.  Germline Risk Contribution to Genomic Instability in Multiple Myeloma , 2019, Front. Genet..

[2]  F. Davies,et al.  Toward personalized treatment in multiple myeloma based on molecular characteristics. , 2019, Blood.

[3]  Yan Wang,et al.  Poor overall survival in hyperhaploid multiple myeloma is defined by double-hit bi-allelic inactivation of TP53 , 2019, Oncotarget.

[4]  G. Parmigiani,et al.  Expressed fusion gene landscape and its impact in multiple myeloma , 2017, Nature Communications.

[5]  O. Stephens,et al.  Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing , 2017, Nature Communications.

[6]  Erich A. Peterson,et al.  Bi-allelic inactivation is more prevalent at relapse in multiple myeloma, identifying RB1 as an independent prognostic marker , 2017, Blood Cancer Journal.

[7]  Alex M. Fichtenholtz,et al.  Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. , 2016, Blood.

[8]  Gordon Cook,et al.  Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  H. Mano The EML4-ALK oncogene: targeting an essential growth driver in human cancer , 2015, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[10]  C. W. Wright,et al.  Nuclear Factor- (cid:2) B-inducing Kinase (NIK) Contains an Amino-terminal Inhibitor of Apoptosis (IAP)-binding Motif (IBM) That Potentiates NIK Degradation by Cellular IAP1 (c-IAP1) * , 2022 .

[11]  Nicolas Stransky,et al.  The landscape of kinase fusions in cancer , 2014, Nature Communications.

[12]  T. Chevassut,et al.  The Genetic Architecture of Multiple Myeloma , 2014, Advances in hematology.

[13]  C. Gridelli,et al.  ALK inhibitors in the treatment of advanced NSCLC. , 2014, Cancer treatment reviews.

[14]  Lisa J. Murray,et al.  Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms , 2013, Leukemia.

[15]  Alex M. Fichtenholtz,et al.  Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing , 2013, Nature Biotechnology.

[16]  Jeffrey A. Engelman,et al.  Tyrosine kinase gene rearrangements in epithelial malignancies , 2013, Nature Reviews Cancer.

[17]  A. Ashworth,et al.  Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. , 2012, Blood.

[18]  Yuki Togashi,et al.  RET, ROS1 and ALK fusions in lung cancer , 2012, Nature Medicine.

[19]  Tatiana G. Kutateladze,et al.  Mechanisms of Resistance to Crizotinib in Patients with ALK Gene Rearranged Non–Small Cell Lung Cancer , 2012, Clinical Cancer Research.

[20]  Genhong Cheng,et al.  Non‐canonical NF‐κB signaling activation and regulation: principles and perspectives , 2011, Immunological reviews.

[21]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[22]  Shao-Cong Sun,et al.  Non-canonical NF-κB signaling pathway , 2011, Cell Research.

[23]  G. Morgan,et al.  A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. , 2010, Blood.

[24]  Francesca Demichelis,et al.  Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma , 2010, Nature Medicine.

[25]  J. Radich,et al.  Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia , 2010, Leukemia.

[26]  L. Staudt,et al.  Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. , 2007, Cancer cell.

[27]  L. Bruhn,et al.  Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. , 2007, Cancer cell.

[28]  Andreas Hochhaus,et al.  Chronic myeloid leukaemia , 2007, The Lancet.

[29]  Yongsheng Huang,et al.  A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. , 2006, Blood.

[30]  John Crowley,et al.  The molecular classification of multiple myeloma. , 2006, Blood.

[31]  J. Keats,et al.  Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. , 2005, Blood.

[32]  M. Nikiforova,et al.  Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. , 2005, The Journal of clinical investigation.

[33]  P. L. Bergsagel,et al.  Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J U Gutterman,et al.  The molecular genetics of Philadelphia chromosome-positive leukemias. , 1988, The New England journal of medicine.

[35]  N. Heisterkamp,et al.  C‐abl and bcr are rearranged in a Ph1‐negative CML patient. , 1985, The EMBO journal.