Controlling multistability in a vibro-impact capsule system

This work concerns the control of multistability in a vibro-impact capsule system driven by a harmonic excitation. The capsule is able to move forward and backward in a rectilinear direction, and the main objective of this work is to control such motion in the presence of multiple coexisting periodic solutions. A position feedback controller is employed in this study, and our numerical investigation demonstrates that the proposed control method gives rise to a dynamical scenario with two coexisting solutions, corresponding to forward and backward progression. Therefore, the motion direction of the system can be controlled by suitably perturbing its initial conditions, without altering the system parameters. To study the robustness of this control method, we apply numerical continuation methods in order to identify a region in the parameter space in which the proposed controller can be applied. For this purpose, we employ the MATLAB-based numerical platform COCO, which supports the continuation and bifurcation detection of periodic orbits of non-smooth dynamical systems.

[1]  Ying-Cheng Lai,et al.  Driving trajectories to a desirable attractor by using small control , 1996 .

[2]  A. Pisarchik,et al.  Control of basins of attraction in a multistable fiber laser , 2009 .

[3]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[4]  Harry Dankowicz,et al.  Coupling FEM With Parameter Continuation for Analysis of Bifurcations of Periodic Responses in Nonlinear Structures , 2013 .

[5]  Yang Liu,et al.  Experimental verification of the vibro-impact capsule model , 2016 .

[6]  Yuri A. Kuznetsov,et al.  SlideCont: An Auto97 driver for bifurcation analysis of Filippov systems , 2005, TOMS.

[7]  Ulrike Feudel,et al.  Complex Dynamics in multistable Systems , 2008, Int. J. Bifurc. Chaos.

[8]  Yang Liu,et al.  Intermittent control of coexisting attractors , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Energy-optimal steering of transitions through a fractal basin boundary , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[10]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[11]  Yang Liu,et al.  Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators , 2016, Commun. Nonlinear Sci. Numer. Simul..

[12]  L. Shampine,et al.  Event location for ordinary differential equations , 2000 .

[13]  Marian Wiercigroch,et al.  Optimization of the Vibro-Impact Capsule System , 2016 .

[14]  U. Feudel,et al.  Control of multistability , 2014 .

[15]  Tomasz Kapitaniak,et al.  Co-existing attractors of impact oscillator , 1998 .

[16]  Tomasz Kapitaniak,et al.  Multistability: Uncovering hidden attractors , 2015, The European Physical Journal Special Topics.

[17]  Van-Du Nguyen,et al.  Nonlinear dynamics of a new electro-vibro-impact system , 2011 .

[18]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[19]  Yuri A. Kuznetsov,et al.  An event-driven method to simulate Filippov systems with accurate computing of sliding motions , 2008, TOMS.

[20]  Frank Schilder,et al.  Recipes for Continuation , 2013, Computational science and engineering.

[21]  Marian Wiercigroch,et al.  Bifurcation techniques for stiffness identification of an impact oscillator , 2016, Commun. Nonlinear Sci. Numer. Simul..

[22]  Harry Dankowicz,et al.  TC-HAT: A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems , 2008, SIAM J. Appl. Dyn. Syst..

[23]  Jian Xu,et al.  Non-linear analysis and quench control of chatter in plunge grinding , 2015 .

[24]  Alfred Rotimi Akisanya,et al.  Global and local dynamics of drifting oscillator for different contact force models , 2010 .

[25]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[26]  R. Sevilla-Escoboza,et al.  Selective monostability in multi-stable systems , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Stefan Siegmund,et al.  A new self-excited chemo-fluidic oscillator based on stimuli-responsive hydrogels: Mathematical modeling and dynamic behavior , 2016 .

[28]  Yang Liu,et al.  Development of a self-propelled capsule robot for pipeline inspection , 2016, 2016 22nd International Conference on Automation and Computing (ICAC).

[29]  O. Olusola,et al.  Synchronization, multistability and basin crisis in coupled pendula , 2010 .

[30]  Ian A. Hiskens,et al.  Continuation techniques for reachability analysis of uncertain power systems , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[31]  Ekaterina Pavlovskaia,et al.  Forward and backward motion control of a vibro-impact capsule system. , 2015 .

[32]  Computing and Controlling Basins of Attraction in Multistability Scenarios , 2015 .

[33]  Alexander N. Pisarchik,et al.  Using periodic modulation to control coexisting attractors induced by delayed feedback , 2003 .

[34]  Cheng Zhang,et al.  Analytical Friction Model of the Capsule Robot in the Small Intestine , 2016, Tribology Letters.

[35]  Iberê L. Caldas,et al.  Basins of Attraction and Transient Chaos in a Gear-Rattling Model , 2001 .

[36]  Hongyi Li,et al.  Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine , 2012, Tribology Letters.

[37]  Lawrence F. Shampine,et al.  Reliable solution of special event location problems for ODEs , 1991, TOMS.

[38]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[39]  Joseph Páez Chávez,et al.  Bifurcation analysis of a piecewise-linear impact oscillator with drift , 2014 .

[40]  Hongnian Yu,et al.  Modelling of a Vibro-Impact Capsule System , 2013 .

[41]  Ekaterina Pavlovskaia,et al.  Vibro-impact responses of capsule system with various friction models , 2013 .

[42]  G. Luo,et al.  Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: Diversity and parameter matching of periodic-impact motions , 2014 .

[43]  Yang Liu,et al.  Path-following analysis of the dynamical response of a piecewise-linear capsule system , 2016, Commun. Nonlinear Sci. Numer. Simul..

[44]  Marian Wiercigroch,et al.  Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model , 2013, Commun. Nonlinear Sci. Numer. Simul..

[45]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[46]  Ekaterina Pavlovskaia,et al.  Complex Dynamics of Bilinear oscillator Close to Grazing , 2010, Int. J. Bifurc. Chaos.

[47]  Frank Schilder,et al.  An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints , 2010, Journal of Computational and Nonlinear Dynamics.