On the Olson and the Strong Davenport constants

A subset $S$ of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of $S$ is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, $p$-groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of more general results, establishing new lower bounds for the cardinality of zero-sumfree sets for various types of groups. The quality of these bounds is explored via the treatment, which is computer-aided, of selected explicit examples. Moreover, we investigate a closely related notion, namely the maximal cardinality of minimal zero-sum sets, i.e., the Strong Davenport constant. In particular, we determine its value for elementary $p$-groups of rank at most $2$, paralleling and building on recent results on this problem for the Olson constant.

[2]  Facultadde Ciencias,et al.  Some Values of Olson's Constant , 2000 .

[3]  Yahya Ould Hamidoune,et al.  On zero-free subset sums , 1996 .

[4]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[5]  Charles Delorme,et al.  Existence conditions for barycentric sequences , 2004, Discret. Math..

[7]  Weidong Gao,et al.  On Long Minimal Zero Sequences in Finite Abelian Groups , 1999 .

[8]  Weidong Gao,et al.  Olson's constant for the group Zp+Zp , 2004, J. Comb. Theory, Ser. A.

[9]  I. Ruzsa Additive combinatorics and geometry of numbers , 2006 .

[10]  John E. Olson,et al.  Sums of sets of group elements , 1975 .

[11]  John E. Olson,et al.  An addition theorem modulo p , 1968 .

[12]  Endre Szemerédi,et al.  On a conjecture of Erdös and Heilbronn , 1970 .

[13]  Weidong Gao,et al.  The critical number of finite abelian groups , 2008 .

[14]  Pingzhi Yuan On the index of minimal zero-sum sequences over finite cyclic groups , 2007, J. Comb. Theory, Ser. A.

[15]  András Sárközy,et al.  Unsolved problems in number theory , 2001, Period. Math. Hung..

[16]  P. A. García-Sánchez,et al.  Non-Unique Factorizations , 2010 .

[17]  Gyan Prakash,et al.  Large Zero-Free Subsets of Z/pZ , 2011, Integers.

[18]  Wolfgang A. Schmid,et al.  Inverse zero-sum problems II , 2008, 0801.3747.

[19]  Endre Szemerédi,et al.  Subset sums modulo a prime , 2008 .

[20]  Fang Chen,et al.  Long zero-free sequences in finite cyclic groups , 2007, Discret. Math..

[21]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[22]  J. Schlage-Puchta,et al.  An improvement on Olson's constant for Zp(+)Zp , 2008, 0805.2139.

[23]  Van H. Vu,et al.  Classification theorems for sumsets modulo a prime , 2009, J. Comb. Theory, Ser. A.

[24]  Paul Erdös,et al.  On the addition of residue classes mod p , 1964 .

[25]  Manfred Liebmann,et al.  On the Davenport constant and on the structure of extremal zero-sum free sequences , 2010, Period. Math. Hung..

[26]  Scott T. Chapman,et al.  Minimal zero-sequences and the strong Davenport constant , 1999, Discret. Math..

[27]  Weidong Gao,et al.  Inverse Zero-Sum Problems III , 2008 .