Nanostructures: a platform for brain repair and augmentation

Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions.

[1]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[2]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[3]  C. Kuan,et al.  Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier , 2013, Proceedings of the National Academy of Sciences.

[4]  Zhuang Liu,et al.  Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. , 2005, Journal of the American Chemical Society.

[5]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[6]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[7]  W. Rutten Selective electrical interfaces with the nervous system. , 2002, Annual review of biomedical engineering.

[8]  Susanna Bosi,et al.  Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. , 2012, ACS chemical neuroscience.

[9]  P. Stroeve,et al.  Fabrication of nanocables by electrochemical deposition inside metal nanotubes. , 2004, Journal of the American Chemical Society.

[10]  Jens Schouenborg,et al.  Biocompatible multichannel electrodes for long-term neurophysiological studies and clinical therapy--novel concepts and design. , 2011, Progress in brain research.

[11]  Chih-Kuang Yeh,et al.  Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. , 2012, Biomaterials.

[12]  J. Kreuter Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB) , 2013, Journal of microencapsulation.

[13]  E. Choi,et al.  Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. , 2012, Biomaterials.

[14]  P. Stroeve,et al.  Electrochemical deposition of Co–Sb thin films on nanostructured gold , 2012, Journal of Applied Electrochemistry.

[15]  Weisheng Zhao,et al.  Neuromorphic function learning with carbon nanotube based synapses , 2013, Nanotechnology.

[16]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[17]  L. Khawli,et al.  Drug delivery across the blood-brain barrier. , 2013, Molecular pharmaceutics.

[18]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[19]  Hong H. Lee,et al.  Wafer-scale sub-micron lithography , 1999 .

[20]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[21]  R. J. Tonucci,et al.  Nanochannel Array Glass , 1992, Science.

[22]  Zafar Iqbal,et al.  Single-walled Carbon Nanotubes Are a New Class of Ion Channel Blockers* , 2003, Journal of Biological Chemistry.

[23]  Mohammad S. M. Saifullah,et al.  Metal hierarchical patterning by direct nanoimprint lithography , 2013, Scientific Reports.

[24]  Ioan Opris,et al.  Inter-laminar microcircuits across neocortex: repair and augmentation , 2013, Front. Syst. Neurosci..

[25]  Henrik Jörntell,et al.  Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain , 2013, PloS one.

[26]  Peijun Ji,et al.  Enzymes immobilized on carbon nanotubes. , 2011, Biotechnology advances.

[27]  Maurizio Prato,et al.  Making carbon nanotubes biocompatible and biodegradable. , 2011, Chemical communications.

[28]  Kensall D. Wise,et al.  Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage , 2007 .

[29]  H. Benson,et al.  Drug delivery across the blood-brain barrier. , 2004, Current drug delivery.

[30]  Charles M. Lieber,et al.  Nanomaterials for Neural Interfaces , 2009 .

[31]  M. Blaho,et al.  Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization , 2013 .

[32]  Peter A. Kollman,et al.  Noncovalent interactions , 2008 .

[33]  Robert E. Hampson,et al.  Columnar Processing in Primate pFC: Evidence for Executive Control Microcircuits , 2012, Journal of Cognitive Neuroscience.

[34]  M. Mahmoudi,et al.  Plasma concentration gradient influences the protein corona decoration on nanoparticles , 2013 .

[35]  B. Botterman,et al.  Carbon nanotube coating improves neuronal recordings. , 2008, Nature nanotechnology.

[36]  N. Melosh,et al.  Fusion of biomimetic stealth probes into lipid bilayer cores , 2010, Proceedings of the National Academy of Sciences.

[37]  Yen-Chung Chang,et al.  Three-dimensional flexible microprobe for recording the neural signal , 2009, 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering.

[38]  P. Stroeve,et al.  Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores. , 2005, The journal of physical chemistry. B.

[39]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[40]  K. Dawson,et al.  Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. , 2013, ACS Chemical Neuroscience.

[41]  Yu-rong Li,et al.  The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse. , 2010, Toxicology.

[42]  F. Braet,et al.  Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? , 2010 .

[43]  Lars Montelius,et al.  Gallium phosphide nanowire arrays and their possible application in cellular force investigations , 2009 .

[44]  Ikuro Suzuki,et al.  Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. , 2013, Biosensors & bioelectronics.

[45]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[46]  Lars Montelius,et al.  Axonal guidance on patterned free-standing nanowire surfaces , 2008, Nanotechnology.

[47]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[48]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[49]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[50]  P. Stroeve,et al.  Mechanism of film growth of tellurium by electrochemical deposition in the presence and absence of cadmium ions. , 2005, The journal of physical chemistry. B.

[51]  Stephen Y. Chou,et al.  Imprint lithography with sub-10 nm feature size and high throughput , 1997 .

[52]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[53]  Lars Montelius,et al.  Gallium phosphide nanowires as a substrate for cultured neurons. , 2007, Nano letters.

[54]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[55]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[56]  S. Demoustier‐Champagne,et al.  Chemical and electrochemical synthesis of polypyrrole nanotubules , 1999 .

[57]  Jianjun Cheng,et al.  Protein corona significantly reduces active targeting yield. , 2013, Chemical communications.

[58]  Morteza Mahmoudi,et al.  Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. , 2013, Advances in colloid and interface science.

[59]  S. Saxena,et al.  Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: Implications for HIV-1-associated neurocognitive disorder , 2010, Journal of NeuroVirology.

[60]  Sanyog Jain,et al.  RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. , 2003, International journal of pharmaceutics.

[61]  C. R. Martin,et al.  Transparent Metal Microstructures , 1989 .

[62]  Preparation and physico-chemical properties of nickel nanostructured materials deposited in etched ion-track membrane , 2005 .

[63]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[64]  G. Cao,et al.  Patterned Microstructure of Sol–Gel Derived Complex Oxides Using Soft Lithography , 2000 .

[65]  C. Perret,et al.  Characterization of 8-in. wafers printed by nanoimprint lithography , 2004 .

[66]  P Varona,et al.  Artificial intelligence in nanotechnology , 2013, Nanotechnology.

[67]  M. Mahmoudi,et al.  Graphene: promises, facts, opportunities, and challenges in nanomedicine. , 2013, Chemical reviews.

[68]  C. Lafon,et al.  Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. , 2013, Journal of neurosurgery.

[69]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[70]  Yingke Zhou,et al.  Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties , 2002 .

[71]  Rianne Stam,et al.  Electromagnetic fields and the blood–brain barrier , 2010, Brain Research Reviews.

[72]  M. Noroozian,et al.  Serum Multivalent Cationic Pattern: Speculation on the Efficient Approach for Detection of Alzheimer's Disease , 2013, Scientific Reports.

[73]  Kosuke Hamaguchi,et al.  Intracellular Neural Recording with Pure Carbon Nanotube Probes , 2013, PloS one.

[74]  K. Dawson,et al.  The Protein Corona Mediates the Impact of Nanomaterials and Slows Amyloid Beta Fibrillation , 2013, Chembiochem : a European journal of chemical biology.

[75]  Weimin Fan,et al.  Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. , 2009, Nature nanotechnology.

[76]  L. Bačáková,et al.  Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns , 2014 .

[77]  C. R. Martin,et al.  Template‐Fabricated Gold Nanowires and Nanotubes , 2003 .

[78]  M. Prato,et al.  Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. , 2005, Angewandte Chemie.

[79]  H. Gendelman,et al.  Macrophage Delivery of Nanoformulated Antiretroviral Drug to the Brain in a Murine Model of NeuroAIDS1 , 2009, The Journal of Immunology.

[80]  Wei Qian,et al.  Amorphous silica nanowires: Intensive blue light emitters , 1998 .

[81]  Jing Li,et al.  Electromagnetic pulse exposure induces overexpression of beta amyloid protein in rats. , 2013, Archives of medical research.

[82]  Lanjuan Li,et al.  The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. , 2010, Biomaterials.

[83]  Donald W. Miller,et al.  Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. , 2001, The Journal of pharmacology and experimental therapeutics.

[84]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[85]  M. Mahmoudi,et al.  Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. , 2013, Nanoscale.

[86]  Michael L Klein,et al.  Understanding nature's design for a nanosyringe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  K. Jirage,et al.  Chemical Strategies for Template Syntheses of Composite Micro- and Nanostructures , 1997 .

[88]  Yoshio Kobayashi,et al.  Molecular sieving and sensing with gold nanotube membranes. , 2002, Chemical record.

[89]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[90]  Jau-Ye Shiu,et al.  Fabrication of Large‐Area Periodic Nanopillar Arrays for Nanoimprint Lithography Using Polymer Colloid Masks , 2003 .

[91]  J. Carruthers,et al.  p-n junctions in silicon nanowires , 2006 .

[92]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[93]  Pasko Rakic,et al.  Radial Columns in Cortical Architecture: It Is the Composition That Counts , 2010, Cerebral cortex.

[94]  Andrew S. Mount,et al.  RNA polymer translocation with single-walled carbon nanotubes , 2004 .

[95]  D. K. Yi,et al.  Surface relief grating induced colloidal crystal structures , 2002 .

[96]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[97]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.

[98]  D. K. Yi,et al.  Spin-on-Based Fabrication of Titania Nanowires Using a Sol−Gel Process , 2002 .

[99]  Teodor Veres,et al.  Pattern replication of 100nm to millimeter-scale features by thermal nanoimprint lithography , 2006 .

[100]  S. Chance,et al.  Microanatomical correlates of cognitive ability and decline: normal ageing, MCI, and Alzheimer's disease. , 2011, Cerebral cortex.

[101]  C. Bruce,et al.  Neural circuitry of judgment and decision mechanisms , 2005, Brain Research Reviews.

[102]  Narayan S Hosmane,et al.  Applications and perspectives of boron-enriched nanocomposites in cancer therapy. , 2013, Future medicinal chemistry.

[103]  Makoto Ishida,et al.  Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth. , 2010, Biosensors & bioelectronics.

[104]  H. Markram,et al.  Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits , 2007, The Journal of Neuroscience.

[105]  Mark E. Davis,et al.  Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor , 2013, Proceedings of the National Academy of Sciences.

[106]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[107]  Sean Callanan,et al.  Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[108]  Young Ha Kim,et al.  Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. , 2013, Biomaterials.

[109]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[110]  D. F. Ogletree,et al.  Integration of point-contact microscopy and atomic-force microscopy: Application to characterization of graphite/Pt(111) , 1999 .

[111]  Shashank Sharma,et al.  Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. , 2002, Journal of the American Chemical Society.

[112]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[113]  H. von Briesen,et al.  Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model , 2012, PloS one.

[114]  Chengwen Sun,et al.  Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. , 2012, Journal of pharmaceutical sciences.

[115]  Mingyuan Gao,et al.  Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. , 2012, ACS nano.

[116]  J. Bergquist,et al.  Identification of nuclei associated proteins by 2D-gel electrophoresis and mass spectrometry , 2001, Journal of Neuroscience Methods.

[117]  C. Lieber,et al.  Design and Implementation of Functional Nanoelectronic Interfaces With Biomolecules, Cells, and Tissue Using Nanowire Device Arrays , 2010, IEEE Transactions on Nanotechnology.

[118]  Susana Cardoso,et al.  Integration of TMR Sensors in Silicon Microneedles for Magnetic Measurements of Neurons , 2013, IEEE Transactions on Magnetics.

[119]  Robert E. Hampson,et al.  Neural Activity in Frontal Cortical Cell Layers: Evidence for Columnar Sensorimotor Processing , 2011, Journal of Cognitive Neuroscience.

[120]  Lihong Liu,et al.  Modern methods for delivery of drugs across the blood-brain barrier. , 2012, Advanced drug delivery reviews.

[121]  Kullervo Hynynen,et al.  Ultrasound enhanced drug delivery to the brain and central nervous system , 2012, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[122]  M. Ishida,et al.  Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio , 2010, Biomedical microdevices.

[123]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[124]  J. Cooper,et al.  Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. , 2006, Lab on a chip.

[125]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[126]  V. Hasırcı,et al.  Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair. , 2014, Journal of biomedical materials research. Part A.

[127]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[128]  I. Boerasu,et al.  New laser ablation chamber for producing carbon nanomaterials using excimer laser , 2015 .

[129]  C. Y. Wang,et al.  Synthesis of α–SiO_2 nanowires using Au nanoparticle catalysts on a silicon substrate , 2001 .

[130]  R. Schöllhorn Intercalation Systems as Nanostructured Functional Materials , 1996 .

[131]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[132]  Xingcai Wu,et al.  Crystalline gallium oxide nanowires: intensive blue light emitters , 2000 .

[133]  Ge/Si nanowire mesoscopic Josephson junctions , 2006, Nature nanotechnology.

[134]  B. Cho,et al.  Analog neuromorphic module based on carbon nanotube synapses. , 2013, ACS nano.

[135]  H. Karembé,et al.  Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis , 2010, Nanotechnology.

[136]  S. Krol,et al.  Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. , 2013, Chemical reviews.

[137]  R. Hampson,et al.  Closing the loop in primate prefrontal cortex: inter-laminar processing , 2012, Front. Neural Circuits.

[138]  T. Webster,et al.  Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke , 2012, International journal of nanomedicine.

[139]  T. Gao,et al.  Alumina nanowire arrays standing on a porous anodic alumina membrane , 2003 .

[140]  M. Mahmoudi,et al.  Physiological temperature has a crucial role in amyloid β in the absence and presence of hydrophobic and hydrophilic nanoparticles. , 2013, ACS chemical neuroscience.

[141]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[142]  Lars Montelius,et al.  Rectifying and sorting of regenerating axons by free-standing nanowire patterns: a highway for nerve fibers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[143]  R. Müller,et al.  Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[144]  V. Tysseling 5.533 – Biomaterials for Central Nervous System Regeneration , 2011 .

[145]  Niels Birbaumer,et al.  Grand Challenges of Brain Computer Interfaces in the Years to Come , 2009, Front. Neurosci..

[146]  Robert Langer,et al.  Human Embryoid Bodies Containing Nano‐ and Microparticulate Delivery Vehicles , 2008 .

[147]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[148]  Sudesh Kumar Yadav,et al.  Biodegradable polymeric nanoparticles based drug delivery systems. , 2010, Colloids and surfaces. B, Biointerfaces.

[149]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[150]  Paul Rochon,et al.  Self-assembly of colloidal spheres on patterned substrates , 2001 .

[151]  M. Mahmoudi,et al.  Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. , 2011, International journal of molecular epidemiology and genetics.

[152]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[153]  N. Lee,et al.  Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. , 2011, Nature nanotechnology.

[154]  Robert E. Hampson,et al.  Manuscript Information Manuscript Files on Parsing the Neural Code in the Prefrontal Cortex of Primates Using Principal Dynamic Modes on Parsing the Neural Code in the Prefrontal Cortex of Primates Using Principal Dynamic Modes , 2022 .

[155]  M. Sahraian,et al.  Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. , 2011, ACS chemical neuroscience.

[156]  Dean J. Miller,et al.  Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes , 2002 .

[157]  R. V. Van Duyne,et al.  Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. , 2005, Journal of the American Chemical Society.

[158]  Lucas M. Santos,et al.  Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing , 2012, Journal of neural engineering.

[159]  Alim Louis Benabid,et al.  What the future holds for deep brain stimulation , 2007, Expert review of medical devices.

[160]  Yadong Li,et al.  Selected-control hydrothermal synthesis of alpha- and beta-MnO(2) single crystal nanowires. , 2002, Journal of the American Chemical Society.

[161]  M. Mahmoudi,et al.  Cell-imprinted substrates direct the fate of stem cells. , 2013, ACS nano.

[162]  S. Seal,et al.  Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides , 2006, Nature nanotechnology.

[163]  T. Chiles,et al.  Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing , 2005, Nature Methods.

[164]  V. Valcárcel,et al.  Development of Single‐Crystal α‐Al2O3 Fibers by Vapor–Liquid–Solid Deposition (VLS) from Aluminum and Powdered Silica , 1998 .

[165]  H. Choi,et al.  In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. , 2009, ACS Nano.

[166]  Morteza Mahmoudi,et al.  Variation of protein corona composition of gold nanoparticles following plasmonic heating. , 2014, Nano letters.

[167]  Edward S Boyden,et al.  Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. , 2012, Optics letters.

[168]  Jan P Stegemann,et al.  Carbon nanotubes in neural interfacing applications , 2011, Journal of neural engineering.

[169]  Morteza Mahmoudi,et al.  Cell "vision": complementary factor of protein corona in nanotoxicology. , 2012, Nanoscale.

[170]  Chong Xie,et al.  Noninvasive neuron pinning with nanopillar arrays. , 2010, Nano letters.

[171]  F. Tomasello,et al.  Nanotechnology platforms in diagnosis and treatment of primary brain tumors. , 2010, Recent Patents on Nanotechnology.

[172]  P. Stroeve,et al.  Growth of ultrathin films of cadmium telluride and tellurium as studied by electrochemical atomic force microscopy. , 2006, Journal of colloid and interface science.

[173]  Morteza Mahmoudi,et al.  A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. , 2010, Colloids and surfaces. B, Biointerfaces.

[174]  Daryl R Kipke,et al.  Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities , 2008, The Journal of Neuroscience.

[176]  Hidetoshi Nishimori,et al.  Retrieval process of an associative memory with a general input-output function , 1993, Neural Networks.

[177]  Gabi Gruetzner,et al.  Nanoimprint lithography: An alternative nanofabrication approach , 2003 .

[178]  H. Zreiqat,et al.  Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[179]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[180]  Svetlana Gelperina,et al.  Transport of drugs across the blood-brain barrier by nanoparticles. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[181]  Robert E. Hampson,et al.  Prefrontal cortical microcircuits bind perception to executive control , 2013, Scientific Reports.

[182]  J. S. Beck,et al.  A New Family of Mesoporous Molecular Sieves , 2002 .

[183]  H. Markram,et al.  Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. , 2009, Nature nanotechnology.

[184]  Awais M. Kamboh,et al.  A new architecture for neural signal amplification in implantable brain machine interfaces , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[185]  S. Matsui,et al.  Room-Temperature Nanoimprint Lithography Using Photosensitive Dry Film , 2006 .

[186]  V. Parpura,et al.  Carbon nanotubes in neuroscience. , 2010, Acta neurochirurgica. Supplement.

[187]  C. Widrig,et al.  Microporous aluminum oxide films at electrodes. 4. Lateral charge transport in self-organized bilayer assemblies , 1988 .

[188]  J. Werner,et al.  Sol-gel coatings for light trapping in crystalline thin film silicon solar cells , 1997 .

[189]  R. O M A I N B R E T T E A N D A L A I N D E S T E X,et al.  Intracellular Recording , 2012 .

[190]  Urs O. Häfeli,et al.  Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision” , 2012, PloS one.

[191]  Charles M Lieber,et al.  Synthesis of CdS and ZnS nanowires using single-source molecular precursors. , 2003, Journal of the American Chemical Society.

[192]  M. Dickinson,et al.  Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. , 2012, ACS nano.

[193]  Prithu Sharma,et al.  Recent advances in carbon nanotube-based electronics , 2008 .

[194]  M. Adeli,et al.  Noncovalent interactions between linear-dendritic copolymers and carbon nanotubes lead to liposome-like nanocapsules , 2012 .

[195]  T. Webster,et al.  Biocompatability of carbon nanotubes with stem cells to treat CNS injuries , 2013, Anatomy & cell biology.

[196]  A. Astier,et al.  Comparison of nanosuspensions and hydroxypropyl-beta-cyclodextrin complex of melarsoprol: pharmacokinetics and tissue distribution in mice. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[197]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[198]  M. Prato,et al.  Functionalized carbon nanotubes for plasmid DNA gene delivery. , 2004, Angewandte Chemie.

[199]  Charles R. Martin,et al.  Optical properties of composite membranes containing arrays of nanoscopic gold cylinders , 1992 .

[200]  J. Shappir,et al.  In-cell recordings by extracellular microelectrodes , 2010, Nature Methods.

[201]  Dong Kee Yi,et al.  Surface-modulation-controlled three-dimensional colloidal crystals , 2002 .

[202]  Morteza Mahmoudi,et al.  Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. , 2012, Chemical reviews.

[203]  Gengfeng Zheng,et al.  Nanowire-Based Nanoelectronic Devices in the Life Sciences , 2007 .

[204]  Ioan Opris,et al.  Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. , 2014, Brain : a journal of neurology.

[205]  K. Hynynen,et al.  Noninvasive and targeted drug delivery to the brain using focused ultrasound. , 2013, ACS chemical neuroscience.

[206]  J. Scherrmann,et al.  Applications of a Blood-Brain Barrier Technology Platform to Predict CNS Penetration of Various Chemotherapeutic Agents. 2. Cationic Peptide Vectors for Brain Delivery , 2007, Chemotherapy.

[207]  H. Dai,et al.  Carbon nanotubes as intracellular protein transporters: generality and biological functionality. , 2005, Journal of the American Chemical Society.

[208]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[209]  Tal Dvir,et al.  Nanotechnological strategies for engineering complex tissues. , 2020, Nature nanotechnology.

[210]  P. Ajayan,et al.  Applications of Carbon Nanotubes , 2001 .

[211]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[212]  S. Rapoport,et al.  Transport of Drugs , 1992 .

[213]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[214]  He-sun Zhu,et al.  Synthesis of novel Sb2O3 and Sb2O5 nanorods , 2000 .

[215]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[216]  G. S. Wu,et al.  Fabrication of Ni–W–P nanowire arrays by electroless deposition and magnetic studies. , 2004 .

[217]  B Wolfrum,et al.  Nanostructured gold microelectrodes for extracellular recording from electrogenic cells , 2011, Nanotechnology.

[218]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[219]  Yadong Yin,et al.  Synthesis and Characterization of MgO Nanowires Through a Vapor‐Phase Precursor Method , 2002 .

[220]  M. Casanova,et al.  Schizophrenia seen as a deficit in the modulation of cortical minicolumns by monoaminergic systems , 2007, International review of psychiatry.

[221]  I. Boerasu,et al.  Synthesis of single-wall carbon nanotubes by excimer laser ablation , 2014 .

[222]  V. Parpura,et al.  Applications of Carbon Nanotubes in Neurobiology , 2007, Neurodegenerative Diseases.

[223]  C. R. Martin,et al.  Template synthesized gold nanotube membranes for chemical separations and sensing. , 2002, The Analyst.

[224]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[225]  M. Prato,et al.  Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. , 2006, Biochimica et biophysica acta.

[226]  P. Stroeve,et al.  Electrochemical Deposition of Co−Sb Thin Films and Nanowires , 2010 .

[227]  S. Cosnier,et al.  Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells , 2014, Front. Bioeng. Biotechnol..

[228]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[229]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[230]  Tengfei Xie,et al.  Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays , 2003 .

[231]  Brian Litt,et al.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo , 2011, Nature Neuroscience.

[232]  K. Leong,et al.  Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. , 2005, Journal of vacuum science & technology. A, Vacuum, surfaces, and films : an official journal of the American Vacuum Society.

[233]  T Stieglitz Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems. , 2007, Acta neurochirurgica. Supplement.

[234]  Zhong Lin Wang,et al.  Ultra-long single crystalline nanoribbons of tin oxide , 2001 .

[235]  Steven A Curley,et al.  Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence , 2006, Proceedings of the National Academy of Sciences.

[236]  Wolfgang Ziegler,et al.  Modern Aspects Of Electrochemistry , 2016 .

[237]  R. Spohr,et al.  Copper tubes prepared by electroless deposition in ion track templates , 2004 .

[238]  Zhang Lide,et al.  Micropolarizer of ordered Ni nanowire arrays embedded in porous anodic alumina membrane , 2003 .

[239]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[240]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[241]  C. Jérôme,et al.  Electrochemically synthesized polypyrrole nanotubules : effects of different experimental conditions , 1998 .

[242]  Alessandro Carpentiero,et al.  Fabrication of three-dimensional stamps for embossing techniques by lithographically controlled isotropic wet etching , 2005 .

[243]  Y. Pang,et al.  Copper nanowire arrays for infrared polarizer , 2003 .

[244]  P. Fromherz,et al.  Semiconductor chips with ion channels, nerve cells and brain slices , 2003, First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings..

[245]  Y. Mao,et al.  Arrays of ordered Pb nanowires with different diameters in different areas embedded in one piece of anodic alumina membrane , 2002 .

[246]  Samjin Choi,et al.  Enzyme-immobilized CNT network probe for in vivo neurotransmitter detection. , 2011, Methods in molecular biology.

[247]  Hao-Li Liu,et al.  Opening of the blood-brain barrier by low-frequency (28-kHz) ultrasound: a novel pinhole-assisted mechanical scanning device. , 2010, Ultrasound in medicine & biology.

[248]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[249]  Yadong Li,et al.  Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires , 2002 .

[250]  C. Youn,et al.  An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment , 2007 .

[251]  Jesper Nygård,et al.  Intact mammalian cell function on semiconductor nanowire arrays: new perspectives for cell-based biosensing. , 2011, Small.

[252]  S. Demoustier‐Champagne,et al.  Effect of Electrolyte Concentration and Nature on the Morphology and the Electrical Properties of Electropolymerized Polypyrrole Nanotubules , 1999 .

[253]  Y. Mao,et al.  Arrays of ordered Ag nanowires with different diameters in different areas embedded in one piece of anodic alumina membrane , 2003 .

[254]  Huifang Xu,et al.  Complex and oriented ZnO nanostructures , 2003, Nature materials.

[255]  Apostolos P. Georgopoulos,et al.  Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy , 2013, Front. Neural Circuits.

[256]  Richard B. Jackman,et al.  Next generation brain implant coatings and nerve regeneration via novel conductive nanocomposite development , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[257]  Yao-Sheng Tung,et al.  Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo. , 2010, Ultrasound in medicine & biology.

[258]  Jurgen E Schneider,et al.  In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide , 2007, Nature Medicine.

[259]  Wei Liu,et al.  Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity , 2010, Clinical Cancer Research.

[260]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[261]  Manuel F. Casanova,et al.  Neuronal distribution in the neocortex of schizophrenic patients , 2008, Psychiatry Research.

[262]  Luciano Fadiga,et al.  Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes. , 2011, ACS nano.

[263]  Peidong Yang,et al.  Synthesis of Ultra‐Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys , 2002 .

[264]  R. Katzman.,et al.  3-0-Methyldopa uptake and inhibition of L-dopa at the blood-brain barrier , 1975 .

[265]  G. S. Wu,et al.  Autocatalytic redox fabrication and magnetic studies of Co Ni P alloy nanowire arrays , 2004 .

[266]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[267]  V. Zerbi,et al.  Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. , 2013, ACS chemical neuroscience.

[268]  P. Ajayan,et al.  Potential Applications of Carbon Nanotubes , 2007 .

[269]  Gabriel A Silva,et al.  Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. , 2005, Surgical neurology.

[270]  G. Ozin Nanochemistry: Synthesis in diminishing dimensions , 1992 .

[271]  Thomas E. Eurell,et al.  Single‐Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long‐Term Labels and Optical Sensors , 2005 .

[272]  Jiang-han Chen,et al.  Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice , 2011, International journal of nanomedicine.

[273]  Peidong Yang,et al.  Interfacing silicon nanowires with mammalian cells. , 2007, Journal of the American Chemical Society.

[274]  J. Duvail,et al.  Fabrication and properties of organic and metal nanocylinders in nanoporous membranes , 1999 .

[275]  B. Davidson,et al.  Transvascular delivery of small interfering RNA to the central nervous system , 2007, Nature.

[276]  Michael S. Strano,et al.  Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes , 2006, Science.

[277]  Philip M. Kelly,et al.  Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. , 2013, Nature nanotechnology.

[278]  M. Mahmoudi,et al.  Graphene oxide strongly inhibits amyloid beta fibrillation. , 2012, Nanoscale.

[279]  Jinghang Wu,et al.  The Morphology of Poly(3,4-Ethylenedioxythiophene) , 2010 .

[280]  T. Kanazawa,et al.  Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. , 2013, Biomaterials.

[281]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[282]  P. Stroeve,et al.  Electroless Gold as a Substrate for Self-Assembled Monolayers , 1998 .

[283]  Jiangang Du,et al.  Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes , 2011, PloS one.

[284]  R. Blaikie,et al.  Nanoimprint lithography of sub-100 nm 3D structures , 2005 .