A Filippov’s Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions

AbstractIn this paper, we first present an impulsive version of Filippov's Theorem for fractional differential inclusions of the form, $$\begin{array}{lll} \quad \qquad D^{\alpha}_{*}y(t) & \in & F(t, y(t)), \quad\; {\rm a.e.}\ t\, \in \, J{\backslash} \{t_{1}, \ldots, t_{m}\}, \ \alpha\, \in \, (0,1], \\ y(t^{+}_{k}) - y(t^{-}_{k}) & = & I_{k}(y(t^{-}_{k})), \quad k = 1, \ldots, m, \\ \qquad \qquad y(0) & = & a,\end{array}$$where J = [0, b], $${D^{\alpha}_{*}}$$ denotes the Caputo fractional derivative and F is a set-valued map. The functions Ikcharacterize the jump of the solutions at impulse points tk ($${k = 1, \ldots , m}$$). In addition, several existence results are established, under both convexity and nonconvexity conditions on the multivalued right-hand side. The proofs rely on a nonlinear alternative of Leray-Schauder type and on Covitz and Nadler’s fixed point theorem for multivalued contractions. The compactness of solution sets is also investigated.

[1]  R. Anderson,et al.  Pulse mass measles vaccination across age cohorts. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[3]  A. Ouahab Filippov's theorem for impulsive differential inclusions with fractional order. , 2009 .

[4]  M. Kisielewicz Differential Inclusions and Optimal Control , 1991 .

[5]  Angus E. Taylor Introduction to functional analysis , 1959 .

[6]  W. Neumann Walter de Gruyter Berlin-New York , 1982 .

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[9]  E. Krüger-Thiemer,et al.  Formal theory of drug dosage regimens. II. The exact plateau effect. , 1969, Journal of theoretical biology.

[10]  Shouchuan Hu,et al.  Handbook of Multivalued Analysis: Volume I: Theory , 1997 .

[11]  J. Trujillo,et al.  Differential equations of fractional order:methods results and problem —I , 2001 .

[12]  Johnny Henderson,et al.  Impulsive differential inclusions with fractional order , 2010, Comput. Math. Appl..

[13]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[14]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[15]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[16]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[17]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[18]  T F Nonnenmacher,et al.  A fractional calculus approach to self-similar protein dynamics. , 1995, Biophysical journal.

[19]  Abdelghani Ouahab,et al.  Some results for fractional boundary value problem of differential inclusions , 2008 .

[20]  V. Basov Invariant surfaces of standard two-dimensional systems with conservative first approximation of the third order , 2008 .

[21]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[22]  K. Deimling Multivalued Differential Equations , 1992 .

[23]  Zhanbing Bai,et al.  Positive solutions for boundary value problem of nonlinear fractional differential equation , 2005 .

[24]  Johnny Henderson,et al.  Fractional functional differential inclusions with finite delay , 2009 .

[25]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[26]  A. G. Ibrahim,et al.  Multivalued fractional differential equations , 1995 .

[27]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[28]  H. Frankowska,et al.  A priori estimates for operational differential inclusions , 1990 .

[29]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[30]  Guozhu Gao,et al.  Existence of fractional differential equations , 2005 .

[31]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[32]  Johnny Henderson,et al.  Existence results for fractional order functional differential equations with infinite delay , 2008 .

[33]  Wolfgang Mackens,et al.  Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties , 2011 .

[34]  M. Benchohra,et al.  Impulsive differential equations and inclusions , 2006 .

[35]  Qianyu Zhu On the solution set of differential inclusions in Banach space , 1991 .

[36]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[37]  A. A. Tolstonogov,et al.  Di erential Inclusions in a Banach Space , 2010 .

[38]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[39]  Johnny Henderson,et al.  Corrigendum to: “Fractional Functional Differential Inclusions with Finite Delay” [Nonlinear Anal. 70(5) (2009) 2091–2105] , 2010 .

[40]  Shaher Momani,et al.  Some analytical properties of solutions of differential equations of noninteger order , 2004, Int. J. Math. Math. Sci..

[41]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[42]  Johnny Henderson,et al.  Existence Results for Fractional Functional Differential Inclusions with Infinite Delay and Applications to Control Theory , 2008 .

[43]  V. Lakshmikantham,et al.  Theory of fractional functional differential equations , 2008 .

[44]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[45]  E. Krüger-Thiemer,et al.  Formal theory of drug dosage regimens. I , 1966 .

[46]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[47]  S. Nadler,et al.  Multi-valued contraction mappings in generalized metric spaces , 1970 .