Overview of chytrid emergence and impacts on amphibians

Chytridiomycosis is an emerging infectious disease of amphibians that affects over 700 species on all continents where amphibians occur. The amphibian–chytridiomycosis system is complex, and the response of any amphibian species to chytrid depends on many aspects of the ecology and evolutionary history of the amphibian, the genotype and phenotype of the fungus, and how the biological and physical environment can mediate that interaction. Impacts of chytridiomycosis on amphibians are varied; some species have been driven extinct, populations of others have declined severely, whereas still others have not obviously declined. Understanding patterns and mechanisms of amphibian responses to chytrids is critical for conservation and management. Robust estimates of population numbers are needed to identify species at risk, prioritize taxa for conservation actions, design management strategies for managing populations and species, and to develop effective measures to reduce impacts of chytrids on amphibians. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.

[1]  M. Vences,et al.  Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe , 2016, Emerging infectious diseases.

[2]  A. Valencia-Aguilar,et al.  Amphibian‐killing chytrid in Brazil comprises both locally endemic and globally expanding populations , 2016, Molecular ecology.

[3]  R. Speare,et al.  Priorities for management of chytridiomycosis in Australia: saving frogs from extinction , 2016, Wildlife Research.

[4]  Larissa L. Bailey,et al.  Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines , 2016, Scientific Reports.

[5]  D. Blackburn,et al.  Dramatic Declines of Montane Frogs in a Central African Biodiversity Hotspot , 2016, PloS one.

[6]  Anna E. Savage,et al.  Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen , 2016, Conservation physiology.

[7]  M. Fisher,et al.  Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis , 2016, EcoHealth.

[8]  B. Scheele,et al.  Chytrid infection and post‐release fitness in the reintroduction of an endangered alpine tree frog , 2016 .

[9]  Anna E. Savage,et al.  Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations , 2016, Proceedings of the Royal Society B: Biological Sciences.

[10]  K. Murray,et al.  History and recent progress on chytridiomycosis in amphibians , 2016 .

[11]  J. Jeschke,et al.  Global patterns in threats to vertebrates by biological invasions , 2016, Proceedings of the Royal Society B: Biological Sciences.

[12]  J. P. Collins,et al.  Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research , 2015, Ecology and evolution.

[13]  K. Lips,et al.  The demography of Atelopus decline: Harlequin frog survival and abundance in central Panama prior to and during a disease outbreak , 2015 .

[14]  B. Scheele,et al.  Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation , 2015, Proceedings of the Royal Society B: Biological Sciences.

[15]  Barbara A. Han,et al.  Host species composition influences infection severity among amphibians in the absence of spillover transmission , 2015, Ecology and evolution.

[16]  V. Vredenburg,et al.  Early 1900s Detection of Batrachochytrium dendrobatidis in Korean Amphibians , 2015, PloS one.

[17]  Kay S. Bradfield,et al.  Chytrid Fungus (Batrachochytrium dendrobatidis) Undetected in the Two Orders of Seychelles Amphibians , 2015 .

[18]  R. Harris,et al.  Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar , 2015, Scientific Reports.

[19]  K. Lips,et al.  A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888 1989) , 2015 .

[20]  Graziella V. DiRenzo,et al.  More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis , 2014, Genome biology and evolution.

[21]  L. F. Toledo,et al.  Partitioning the net effect of host diversity on an emerging amphibian pathogen , 2014, Proceedings of the Royal Society B: Biological Sciences.

[22]  Rhys A. Farrer,et al.  Recent introduction of a chytrid fungus endangers Western Palearctic salamanders , 2014, Science.

[23]  F. Haesebrouck,et al.  Environmental Determinants of Recent Endemism of Batrachochytrium dendrobatidis Infections in Amphibian Assemblages in the Absence of Disease Outbreaks , 2014, Conservation biology : the journal of the Society for Conservation Biology.

[24]  S. Ron,et al.  Changes in Population Size and Survival in Atelopus spumarius (Anura: Bufonidae) Are Not Correlated with Chytrid Prevalence , 2014 .

[25]  Nicholas M. Caruso,et al.  Unexpected Rarity of the Pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957–2011 , 2014, PloS one.

[26]  T. Raffel,et al.  Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression , 2014, Nature.

[27]  R. Knight,et al.  Interacting Symbionts and Immunity in the Amphibian Skin Mucosome Predict Disease Risk and Probiotic Effectiveness , 2014, PloS one.

[28]  Graziella V. DiRenzo,et al.  Fungal Infection Intensity and Zoospore Output of Atelopus zeteki, a Potential Acute Chytrid Supershedder , 2014, PloS one.

[29]  R. Knight,et al.  The amphibian skin‐associated microbiome across species, space and life history stages , 2014, Molecular ecology.

[30]  C. Haddad,et al.  Long‐term endemism of two highly divergent lineages of the amphibian‐killing fungus in the Atlantic Forest of Brazil , 2014, Molecular ecology.

[31]  M. Paingankar,et al.  Endemic Asian Chytrid Strain Infection in Threatened and Endemic Anurans of the Northern Western Ghats, India , 2013, PloS one.

[32]  M. Fisher,et al.  Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians , 2013, Proceedings of the National Academy of Sciences.

[33]  Guinevere O U Wogan,et al.  Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians , 2013, Molecular ecology.

[34]  F. Pasmans,et al.  No detection of chytrid in first systematic screening of Bombina variegata pachypus (Anura: Bombinatoridae) in Liguria, northern Italy , 2013 .

[35]  Larissa L. Bailey,et al.  Trends in Amphibian Occupancy in the United States , 2013, PloS one.

[36]  G. Nascetti,et al.  Widespread Occurrence of Batrachochytrium dendrobatidis in Contemporary and Historical Samples of the Endangered Bombina pachypus along the Italian Peninsula , 2013, PloS one.

[37]  J. Stajich,et al.  Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data , 2013, Proceedings of the National Academy of Sciences.

[38]  R. Alford,et al.  Hot bodies protect amphibians against chytrid infection in nature , 2013, Scientific Reports.

[39]  L. Brooks,et al.  Population Recovery following Decline in an Endangered Stream-Breeding Frog (Mixophyes fleayi) from Subtropical Australia , 2013, PloS one.

[40]  D. Aanensen,et al.  Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus , 2013, PloS one.

[41]  Gilbert B. Adum,et al.  West Africa - A Safe Haven for Frogs? A Sub-Continental Assessment of the Chytrid Fungus (Batrachochytrium dendrobatidis) , 2013, PloS one.

[42]  Nicholas M. Caruso,et al.  Truly enigmatic declines in terrestrial salamander populations in Great Smoky Mountains National Park , 2013 .

[43]  Christina A. Cuomo,et al.  Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade , 2012, Molecular ecology.

[44]  C. Sarmiento,et al.  Bd on the Beach: High Prevalence of Batrachochytrium dendrobatidis in the Lowland Forests of Gorgona Island (Colombia, South America) , 2012, EcoHealth.

[45]  M. Lampo,et al.  High Turnover Rates in Remnant Populations of the Harlequin Frog Atelopus cruciger (Bufonidae): Low Risk of Extinction? , 2012 .

[46]  B. R. Schmidt,et al.  Populations of a Susceptible Amphibian Species Can Grow despite the Presence of a Pathogenic Chytrid Fungus , 2012, PloS one.

[47]  E. Narayan,et al.  Absence of invasive Chytrid fungus (Batrachochytrium dendrobatidis) in native Fijian ground frog (Platymantis vitiana) populations on Viwa-Tailevu, Fiji Islands , 2011 .

[48]  Rhys A. Farrer,et al.  Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage , 2011, Proceedings of the National Academy of Sciences.

[49]  R. Alford,et al.  Environmental Refuge from Disease‐Driven Amphibian Extinction , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[50]  Lindsay M. Biga,et al.  A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis , 2011, Proceedings of the National Academy of Sciences.

[51]  J. McGuire,et al.  Is Chytridiomycosis an Emerging Infectious Disease in Asia? , 2011, PloS one.

[52]  D. Wake,et al.  Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis , 2011, Proceedings of the National Academy of Sciences.

[53]  A. J. Crawford,et al.  Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama , 2010, Proceedings of the National Academy of Sciences.

[54]  Cheryl J. Briggs,et al.  Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians , 2010, Proceedings of the National Academy of Sciences.

[55]  C. Briggs,et al.  Dynamics of an emerging disease drive large-scale amphibian population extinctions , 2010, Proceedings of the National Academy of Sciences.

[56]  D. Driscoll,et al.  The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007 , 2010 .

[57]  Cedric E. Ginestet,et al.  Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. , 2010, Ecology letters.

[58]  T. Kuroki,et al.  Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan , 2009, Molecular ecology.

[59]  Jonathan M. Chase,et al.  Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas. , 2009, Ecology letters.

[60]  P. Daszak,et al.  Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana) , 2009 .

[61]  R. Harris,et al.  Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus , 2009, The ISME Journal.

[62]  D. Wake,et al.  Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis , 2009, Proceedings of the National Academy of Sciences.

[63]  J. Mendelson,et al.  Riding the Wave: Reconciling the Roles of Disease and Climate Change in Amphibian Declines , 2008, PLoS biology.

[64]  R. Alford,et al.  Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. , 2007, Diseases of aquatic organisms.

[65]  M. Fisher,et al.  Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? , 2007, Proceedings of the Royal Society B: Biological Sciences.

[66]  J. Hero,et al.  Large‐scale seasonal variation in the prevalence and severity of chytridiomycosis , 2006 .

[67]  K. Krajick The Lost World of the Kihansi Toad , 2006, Science.

[68]  R. Alford,et al.  Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Bosch,et al.  Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Peñalara Natural Park, Spain , 2006, Oryx.

[70]  I. Bastian,et al.  Chytrid Fungus in Europe , 2005, Emerging infectious diseases.

[71]  Fernando Castro,et al.  Catastrophic Population Declines and Extinctions in Neotropical Harlequin Frogs (Bufonidae: Atelopus) 1 , 2005 .

[72]  I. Sazima,et al.  Amphibian Declines in Brazil: An Overview 1 , 2005 .

[73]  B. Young,et al.  Status and Trends of Amphibian Declines and Extinctions Worldwide , 2004, Science.

[74]  R. Speare,et al.  Origin of the Amphibian Chytrid Fungus , 2004, Emerging infectious diseases.

[75]  R. Speare,et al.  Endemic Infection of the Amphibian Chytrid Fungus in a Frog Community Post-Decline , 2004, PLoS biology.

[76]  J. Mendelson,et al.  Amphibian population declines in montane southern Mexico: resurveys of historical localities , 2004 .

[77]  P. Burrowes,et al.  POTENTIAL CAUSES FOR AMPHIBIAN DECLINES IN PUERTO RICO , 2004 .

[78]  John D. Reeve,et al.  Ecological Traits Predicting Amphibian Population Declines in Central America , 2003 .

[79]  James P. Collins,et al.  Global amphibian declines: sorting the hypotheses , 2003 .

[80]  D. E. Green,et al.  Diagnostic Histological Findings in Yosemite Toads (Bufo canorus) from a Die-off in the 1970s , 2001 .

[81]  M. García‐París,et al.  Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain , 2001 .

[82]  C. Raxworthy,et al.  Tadpoles: The Biology of Anuran Larvae , 2000, Copeia.

[83]  C. Scott Findlay,et al.  Quantitative evidence for global amphibian population declines , 2000, Nature.

[84]  J. Longcore,et al.  BATRACHOCHYTRIUM DENDROBATIDIS GEN. ET SP. NOV., A CHYTRID PATHOGENIC TO AMPHIBIANS , 1999 .

[85]  K. Lips Mass Mortality and Population Declines of Anurans at an Upland Site in Western Panama , 1999 .

[86]  D E Green,et al.  Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  K. Lips Decline of a Tropical Montane Amphibian Fauna , 1998 .

[88]  R. Speare,et al.  Epidemic Disease and the Catastrophic Decline of Australian Rain Forest Frogs , 1996 .

[89]  J. Pounds,et al.  Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog , 1994 .

[90]  M. L. Morton,et al.  Population declines of Yosemite toads in the eastern Sierra Nevada of California , 1993 .

[91]  D. Bradford Mass Mortality and Extinction in a High-elevation Population of Rana muscosa , 1991 .

[92]  D. Wake,et al.  Declining amphibian populations: A global phenomenon? , 1990 .

[93]  W. Heyer,et al.  Decimations, Extinctions, and Colonizations of Frog Populations in Southeast Brazil and Their Evolutionary Implications , 1988 .

[94]  Kevin M. Johnson,et al.  Possible extinction of the Wyoming toad, Bufo hemiophrys baxteri , 1985 .

[95]  C. K. Dodd,et al.  The Status of the Wyoming Toad (Bufo hemiophrys baxteri) , 1982, Environmental Conservation.

[96]  L. Karen Predicting Amphibian Population Declines in Central America , 2013 .

[97]  D. Gower,et al.  High Prevalence of the Amphibian Chytrid Fungus ( Batrachochytrium dendrobatidis ) across Multiple Taxa and Localities in the Highlands of Ethiopia , 2012 .

[98]  A. Malhotra,et al.  A Report On The Status Of The Herpetofauna Of The Commonwealth Of Dominica, West Indies , 2007 .