Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ”

We present the design of an object oriented general purpose library for isogeometric analysis, where the mathematical concepts of the isogeometric method and their relationships are directly mapped into classes and their interactions. The encapsulation of mathematical concepts into interacting building blocks gives flexibility to use the library in a wide range of scientific areas and applications. We provide a precise framework for a lot of loose, available information regarding the implementation of the isogeometric method, and also discuss the similarities and differences between this and the finite element method. We also describe how to implement this proposed design in a C++11 open source library, \textttigatools (http://www.igatools.org). The library uses advanced object oriented and generic programming techniques to ensure reusability, reliability, and maintainability of the source code. It includes isogeometric elements of the h-div and h-curl type, and supports the development of dimension indep...

[1]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[2]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[3]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[4]  Giancarlo Sangalli,et al.  Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique , 2013 .

[5]  Bernd Simeon,et al.  Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations , 2013 .

[6]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[7]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[8]  Benjamin J. Ellis,et al.  FEBio: finite elements for biomechanics. , 2012, Journal of biomechanical engineering.

[9]  Tom Lyche,et al.  Locally Refinable Splines over Box-Partitions , 2012 .

[10]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[11]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[12]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[13]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[14]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[15]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[16]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[17]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[18]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[19]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[20]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[21]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[22]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[25]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[26]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[27]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[29]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[30]  Kent L. Beck,et al.  Test-driven Development - by example , 2002, The Addison-Wesley signature series.

[31]  P. G. Ciarlet,et al.  Numerical methods for fluids , 2003 .

[32]  Alan B. Williams,et al.  SAND REPORT SAND 2003-2927 Unlimited Release Printed August 2003 An Overview of Trilinos , 2003 .

[33]  Bjarne Stroustrup,et al.  The C++ Programming Language: Special Edition , 2000 .

[34]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[35]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[36]  Michael J. Vilot,et al.  Standard template library , 1996 .

[37]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[38]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[39]  R. Crowninshield,et al.  Finite Elements in Biomechanics , 1982 .

[40]  L. Schumaker Spline Functions: Basic Theory , 1981 .