Nanoparticles and Their Fate in Soil Ecosystem

[1]  J. Santamaría,et al.  Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems. , 2019, International journal of biological macromolecules.

[2]  Baohong Zhang,et al.  Nanoparticle-Plant Interactions: Two-Way Traffic. , 2019, Small.

[3]  S. Shahi,et al.  Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges , 2018, Journal of Nanostructure in Chemistry.

[4]  T. Minkina,et al.  Effect of nanoparticles on crops and soil microbial communities , 2018, Journal of Soils and Sediments.

[5]  I. Fatimah,et al.  SILVER NANOPARTICLES SYNTHESIZED USING LANTANA CAMARA FLOWER EXTRACT BY REFLUX, MICROWAVE AND ULTRASOUND METHODS , 2018 .

[6]  T. Minkina,et al.  Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review , 2018 .

[7]  Azra Yasmin,et al.  Microbial synthesis of nanoparticles and their potential applications in biomedicine , 2017 .

[8]  A. Urban,et al.  The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment , 2017 .

[9]  N. Saha,et al.  Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. , 2017, Journal of hazardous materials.

[10]  I. Ahmad,et al.  Impact of Metal Oxide Nanoparticles on Beneficial Soil Microorganisms and their Secondary Metabolites , 2017 .

[11]  N. Tufenkji,et al.  Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating , 2017 .

[12]  I. Letofsky-Papst,et al.  Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. , 2017, Ecotoxicology and environmental safety.

[13]  N. Clipson,et al.  Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles , 2017, Ecotoxicology.

[14]  R. Nisbet,et al.  Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. , 2017, The Science of the total environment.

[15]  M. Komárek,et al.  Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. , 2016 .

[16]  H. Xin,et al.  Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips , 2016, Bulletin of Environmental Contamination and Toxicology.

[17]  A. Mukherjee,et al.  Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. , 2016, Mutation research. Genetic toxicology and environmental mutagenesis.

[18]  Arun Kumar,et al.  Impact of Irrigation Using Water Containing CuO and ZnO Nanoparticles on Spinach oleracea Grown in Soil Media , 2016, Bulletin of Environmental Contamination and Toxicology.

[19]  Youzhi Feng,et al.  Arbuscular Mycorrhizal Fungi Alleviate the Negative Effects of Iron Oxide Nanoparticles on Bacterial Community in Rhizospheric Soils , 2016, Front. Environ. Sci..

[20]  J. White,et al.  Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions , 2016 .

[21]  B. Xing,et al.  Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. , 2016, Chemosphere.

[22]  Rattan Lal,et al.  Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? , 2016, Water, Air, & Soil Pollution.

[23]  Liming Liu,et al.  Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton , 2016 .

[24]  J. Chen,et al.  Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.) , 2015, International journal of environmental research and public health.

[25]  C. Chu,et al.  Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. , 2015, Journal of hazardous materials.

[26]  J. Peralta-Videa,et al.  Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). , 2015, Environmental science. Processes & impacts.

[27]  Le Van Nhan,et al.  Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3) , 2015, Environmental Science and Pollution Research.

[28]  Ying-xu Chen,et al.  Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil , 2015 .

[29]  I. Chung,et al.  Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). , 2015, Ecotoxicology and environmental safety.

[30]  Marie Simonin,et al.  Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review , 2015, Environmental Science and Pollution Research.

[31]  Jun Yao,et al.  The Effect of Metal Oxide Nanoparticles on Functional Bacteria and Metabolic Profiles in Agricultural Soil , 2015, Bulletin of Environmental Contamination and Toxicology.

[32]  Jose R Peralta-Videa,et al.  Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). , 2015, Environmental science. Processes & impacts.

[33]  J. Peralta-Videa,et al.  Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). , 2014, Plant physiology and biochemistry : PPB.

[34]  Sung-Eun Lee,et al.  SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. , 2014, Environmental toxicology and pharmacology.

[35]  J. Lead,et al.  Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. , 2014, Environmental microbiology reports.

[36]  Seung-Hyun Kim,et al.  Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants , 2014, Acta Physiologiae Plantarum.

[37]  I. Chung,et al.  A Mechanistic Study on the Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells , 2014, Biological Trace Element Research.

[38]  C. Vannini,et al.  Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. , 2014, Journal of plant physiology.

[39]  R. Lal,et al.  Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max) , 2014, Scientific Reports.

[40]  N. Bruce,et al.  Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold , 2014, PloS one.

[41]  M. Khan,et al.  Nanotechnology: Scope and Application in Plant Disease Management , 2014 .

[42]  Baohong Zhang,et al.  Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum) , 2014, Functional & Integrative Genomics.

[43]  J. Peralta-Videa,et al.  Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? , 2014, Journal of hazardous materials.

[44]  V. Shah,et al.  The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions , 2014 .

[45]  P. Holden,et al.  Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. , 2014, Ecotoxicology and environmental safety.

[46]  Caroline Peyrot,et al.  Effects of silver nanoparticles on soil enzyme activities with and without added organic matter , 2014, Environmental toxicology and chemistry.

[47]  A. K. Shaw,et al.  Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. , 2013, Chemosphere.

[48]  A. Kauffmann,et al.  Nano/Microstructured Materials: Rapid, Low-Cost, and Eco-Friendly Synthesis Methods , 2013 .

[49]  V. Kant,et al.  A Review on Biological Activity of Imidazole and Thiazole Moieties and their Derivatives , 2013 .

[50]  S. Paria,et al.  Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens , 2013 .

[51]  S. R. Radhika Rajasree,et al.  Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. , 2013, Colloids and surfaces. B, Biointerfaces.

[52]  V. Kant,et al.  Synthesis, Characterization and Biomedical Applications of Nanoparticles , 2013 .

[53]  J. Peralta-Videa,et al.  Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies , 2013 .

[54]  Michael F. Hochella,et al.  Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario , 2013, PloS one.

[55]  M. Rafique,et al.  SELECTION OF A SUITABLE METHOD FOR THE SYNTHESIS OF COPPER NANOPARTICLES , 2012 .

[56]  Christopher M. Hessler,et al.  The influence of capsular extracellular polymeric substances on the interaction between TiO₂ nanoparticles and planktonic bacteria. , 2012, Water research.

[57]  T. Shaheen,et al.  Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. , 2012, Carbohydrate polymers.

[58]  Ameer Azam,et al.  Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains , 2012, International journal of nanomedicine.

[59]  C. Krishnaraj,et al.  Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[60]  P. Alvarez,et al.  Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. , 2012, ACS nano.

[61]  Yuan Ge,et al.  Identification of Soil Bacteria Susceptible to TiO2 and ZnO Nanoparticles , 2012, Applied and Environmental Microbiology.

[62]  S. Kolekar,et al.  Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[63]  T. Tolaymat,et al.  Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. , 2012, The Science of the total environment.

[64]  Yongsheng Chen,et al.  Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. , 2012, ACS nano.

[65]  Abdul Abdul Rahuman,et al.  Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[66]  P. Alvarez,et al.  Relative susceptibility and transcriptional response of nitrogen cycling bacteria to quantum dots. , 2012, Environmental science & technology.

[67]  Y. An,et al.  Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. , 2012, Chemosphere.

[68]  E. Joner,et al.  Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil , 2012, Environmental toxicology.

[69]  Young Jik Kwon,et al.  "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[70]  Yinjie J. Tang,et al.  Cu-doped TiO(2) nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet light (UV) exposure. , 2011, The Science of the total environment.

[71]  A. Mourato,et al.  Biosynthesis of Crystalline Silver and Gold Nanoparticles by Extremophilic Yeasts , 2011, Bioinorganic chemistry and applications.

[72]  R. Bryaskova,et al.  Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP) , 2011, Journal of chemical biology.

[73]  Ahmed A. Tayel,et al.  ANTIBACTERIAL ACTION OF ZINC OXIDE NANOPARTICLES AGAINST FOODBORNE PATHOGENS , 2011 .

[74]  Youn-Joo An,et al.  Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. , 2011, The Science of the total environment.

[75]  J. Jung,et al.  Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin , 2011, Mycobiology.

[76]  U. Roessner,et al.  Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. , 2011, Journal of colloid and interface science.

[77]  Yuan Ge,et al.  Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. , 2011, Environmental science & technology.

[78]  R. Venkatesan,et al.  Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). , 2010, Colloids and surfaces. B, Biointerfaces.

[79]  Mitchel J. Doktycz,et al.  Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability , 2010, Applied and Environmental Microbiology.

[80]  N. Alikunhi,et al.  Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. , 2010, Colloids and surfaces. B, Biointerfaces.

[81]  A. R. Binupriya,et al.  Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. , 2010, Journal of hazardous materials.

[82]  M. Kasprowicz,et al.  The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. , 2010, Canadian journal of microbiology.

[83]  Guadalupe de la Rosa,et al.  X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. , 2010, Journal of agricultural and food chemistry.

[84]  Ryan Walsh,et al.  Nanotechnology in fertilizers. , 2010, Nature nanotechnology.

[85]  R. Upadhyay,et al.  Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities , 2010 .

[86]  J. Moya,et al.  The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles , 2009, Nanotechnology.

[87]  Sureshbabu Ram Kumar Pandian,et al.  Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. , 2009, Colloids and surfaces. B, Biointerfaces.

[88]  A. Ingle,et al.  Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles , 2009 .

[89]  Hao Li,et al.  Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7 , 2009, Journal of applied microbiology.

[90]  Y. Jo,et al.  Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. , 2009, Plant disease.

[91]  Sudheer Kumar Singh,et al.  Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain , 2009 .

[92]  D. Philip,et al.  Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[93]  K. Kathiresan,et al.  Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. , 2009, Colloids and surfaces. B, Biointerfaces.

[94]  Wei Jiang,et al.  Bacterial toxicity comparison between nano- and micro-scaled oxide particles. , 2009, Environmental pollution.

[95]  Rachel Lubart,et al.  Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS‐Mediated Cell Injury , 2009 .

[96]  A. K. Jha,et al.  A green low-cost biosynthesis of Sb2O3 nanoparticles , 2009 .

[97]  H. Paerl,et al.  Controlling Eutrophication: Nitrogen and Phosphorus , 2009, Science.

[98]  J. Peralta-Videa,et al.  The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV–visible spectroscopy , 2009, Nanotechnology.

[99]  A. Ingle,et al.  Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus , 2009, Letters in applied microbiology.

[100]  K. Narayanan,et al.  Coriander leaf mediated biosynthesis of gold nanoparticles , 2008 .

[101]  S. Ryu,et al.  Synthesis of Copper Nanoparticles by Electroreduction Process , 2008 .

[102]  Enrique Navarro,et al.  Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. , 2008, Environmental science & technology.

[103]  G. Lisichkin,et al.  A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles , 2008, Nanotechnology.

[104]  A. Ingle,et al.  Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles , 2008 .

[105]  Hee-Seok Kweon,et al.  Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water‐insoluble nanoparticles , 2008, Environmental toxicology and chemistry.

[106]  J. Lloyd,et al.  Formation of Nanoscale Elemental Silver Particles via Enzymatic Reduction by Geobacter sulfurreducens , 2008, Applied and Environmental Microbiology.

[107]  Aniruddh Solanki,et al.  Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. , 2008, Nanomedicine.

[108]  S. Gurunathan,et al.  Biosynthesis of silver nanocrystals by Bacillus licheniformis. , 2008, Colloids and surfaces. B, Biointerfaces.

[109]  S. Godet,et al.  Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity , 2008 .

[110]  Nanna B. Hartmann,et al.  Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi , 2008, Ecotoxicology.

[111]  S. Basavaraja,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum , 2008 .

[112]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[113]  A. Sayari,et al.  Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. , 2008, Colloids and surfaces. B, Biointerfaces.

[114]  L. Bharadwaj,et al.  Generation of selenium containing nano-structures by soil bacterium Pseudomonas Aeruginosa , 2008 .

[115]  K. Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[116]  Baoshan Xing,et al.  Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. , 2007, Environmental pollution.

[117]  T. Coradin,et al.  Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. , 2007, Journal of nanoscience and nanotechnology.

[118]  Jooho Moon,et al.  Synthesis and size control of monodisperse copper nanoparticles by polyol method. , 2007, Journal of colloid and interface science.

[119]  M. Mahmoud,et al.  Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[120]  Ning Gu,et al.  Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata , 2007 .

[121]  K. Prasad,et al.  Lactobacillusassisted synthesis of titanium nanoparticles , 2007, Nanoscale Research Letters.

[122]  Jiale Huang,et al.  Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf , 2007 .

[123]  Tomoya Uruga,et al.  Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. , 2007, Journal of biotechnology.

[124]  Penglei Chen,et al.  Synthesis of well-defined copper nanocubes by a one-pot solution process , 2006 .

[125]  R. P. Nachane,et al.  Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. , 2006, Colloids and surfaces. B, Biointerfaces.

[126]  H. B. Liu,et al.  Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles , 2006 .

[127]  S. H. Kim,et al.  A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases , 2006 .

[128]  Mariekie Gericke,et al.  BIOLOGICAL SYNTHESIS OF METAL NANOPARTICLES , 2006 .

[129]  M. Meneghetti,et al.  Laser ablation synthesis of gold nanoparticles in organic solvents. , 2006, The journal of physical chemistry. B.

[130]  Ernesto Reverchon,et al.  Nanomaterials and supercritical fluids , 2006 .

[131]  K. C. Bhainsa,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. , 2006, Colloids and surfaces. B, Biointerfaces.

[132]  Lei Chen,et al.  The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces , 2006 .

[133]  Absar Ahmad,et al.  Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. , 2005, Journal of nanoscience and nanotechnology.

[134]  Ling Yang,et al.  Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. , 2005, Toxicology letters.

[135]  S. Carpenter Eutrophication of aquatic ecosystems: bistability and soil phosphorus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Anjali A. Athawale,et al.  Synthesis of CTAB–IPA reduced copper nanoparticles , 2005 .

[137]  Younan Xia,et al.  Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. , 2005, Angewandte Chemie.

[138]  W. Verstraete,et al.  Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. , 2005, Environmental microbiology.

[139]  G. Vallini,et al.  Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. , 2005, Environment international.

[140]  Vipul Bansal,et al.  Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum , 2004 .

[141]  Haifeng Zhu,et al.  Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation , 2004 .

[142]  P. Zambonin,et al.  Antifungal activity of polymer-based copper nanocomposite coatings , 2004 .

[143]  J. Peralta-Videa,et al.  Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology , 2004 .

[144]  C. B. Roberts,et al.  Copper Nanoparticle Synthesis in Compressed Liquid and Supercritical Fluid Reverse Micelle Systems , 2004 .

[145]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[146]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[147]  Weimin Zhang,et al.  A method for the synthesis of spherical copper nanoparticles in the organic phase. , 2004, Journal of colloid and interface science.

[148]  Shiv Shankar,et al.  Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes , 2003 .

[149]  Kumar,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum , 2003 .

[150]  R. Kumar,et al.  Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. , 2003 .

[151]  V. Pol,et al.  Sonochemical Deposition of Air-Stable Iron Nanoparticles on Monodispersed Carbon Spherules , 2003 .

[152]  J. Peralta-Videa,et al.  Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles , 2003 .

[153]  K. Vijayamohanan,et al.  Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: preparation, structure, and insulating-to-metallic transition. , 2002, Journal of colloid and interface science.

[154]  M. Kowshik,et al.  Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. , 2002, Biotechnology and bioengineering.

[155]  L. Øvreås,et al.  Microbial diversity and function in soil: from genes to ecosystems. , 2002, Current opinion in microbiology.

[156]  I. R. Harris,et al.  Bioaccumulation of palladium by Desulfovibrio desulfuricans , 2002 .

[157]  C. B. Roberts,et al.  Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems , 2001 .

[158]  Jian Yang,et al.  Shape Control and Characterization of Transition Metal Diselenides MSe2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process , 2001 .

[159]  A. Gedanken,et al.  Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles , 2000 .

[160]  D. Correll THE ROLE OF PHOSPHORUS IN THE EUTROPHICATION OF RECEIVING WATERS: A REVIEW , 1998 .

[161]  W. Frankenberger,et al.  Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles , 1997, Applied and environmental microbiology.

[162]  L. Barton,et al.  Transformation of selenate and selenite to elemental selenium byDesulfovibrio desulfuricans , 1995, Journal of Industrial Microbiology.

[163]  M. Pileni,et al.  NANOMETER METALLIC COPPER PARTICLE SYNTHESIS IN REVERSE MICELLES , 1993 .

[164]  R. Mccready,et al.  Reduction of Selenate and Selenite to Elemental Selenium by a Pseudomonas stutzeri Isolate , 1992, Applied and environmental microbiology.

[165]  Edward R. Landa,et al.  Microbial reduction of uranium , 1991, Nature.

[166]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[167]  D. Lovley,et al.  Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens , 1989, Applied and environmental microbiology.

[168]  P. Wong,et al.  Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis , 1976, Archives of Microbiology.

[169]  G. J. Doyle Design of a facility (smog chamber) for studying photochemical reactions under simulated tropospheric conditions , 1970 .

[170]  H. Whiteley,et al.  REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I , 1962, Journal of bacteriology.

[171]  C. A. Woolfolk Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. II. Stoichiometry with inorganic sulfur compounds. , 1962, Journal of bacteriology.

[172]  M. Khan,et al.  Effect of Nanoparticles on Plant Pathogens , 2019, Advances in Phytonanotechnology.

[173]  M. Khan,et al.  Application of Nanofertilizer and Nanopesticides for Improvements in Crop Production and Protection , 2017 .

[174]  A. C. Pandey,et al.  Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. , 2017, Plant physiology and biochemistry : PPB.

[175]  Jing Chen,et al.  Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types , 2017, Journal of Soils and Sediments.

[176]  Attarad Ali,et al.  CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants , 2016, Applied Biochemistry and Biotechnology.

[177]  M. Komárek,et al.  Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure , 2015, Environmental Science and Pollution Research.

[178]  S. M. Yadav,et al.  Applications of Nanotechnology in Agricultural and their Role in Disease Management , 2015 .

[179]  A. Anderson,et al.  Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants , 2014, Ecotoxicology.

[180]  E. Orrantia-Borunda,et al.  Effect of cuo nanoparticles over isolated bacterial strains from agricultural soil , 2014 .

[181]  A. Noorlidah,et al.  Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica , 2013 .

[182]  B. Berkowitz,et al.  Effects of metal oxide nanoparticles on soil properties. , 2013, Chemosphere.

[183]  S. K. Rajkishore,et al.  NANOTOXICITY AT VARIOUS TROPHIC LEVELS: A REVIEW , 2013 .

[184]  A. Ingle,et al.  Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya — A First Report , 2012, Journal of Plant Biochemistry and Biotechnology.

[185]  M. Dondi,et al.  Microwave-assisted polyol synthesis of Cu nanoparticles , 2011 .

[186]  Huiyu Chen,et al.  Metallic copper nanostructures synthesized by a facile hydrothermal method. , 2010, Journal of nanoscience and nanotechnology.

[187]  S. Basavaraja,et al.  Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. , 2009, Colloids and surfaces. B, Biointerfaces.

[188]  R. Sanghi,et al.  Biomimetic synthesis and characterisation of protein capped silver nanoparticles. , 2009, Bioresource technology.

[189]  Avinash C. Pandey,et al.  PARTHENIUM LEAF EXTRACT MEDIATED SYNTHESIS OF SILVER NANOPARTICLES: A NOVEL APPROACH TOWARDS WEED UTILIZATION , 2009 .

[190]  J. Moya,et al.  Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles , 2009, Nanotechnology.

[191]  Absar Ahmad,et al.  Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract , 2006, Biotechnology progress.

[192]  Meucci,et al.  Acute toxicity of disinfectants to ornamental fish , 2005 .

[193]  S. Komarneni Nanophase materials by hydrothermal, microwave- hydrothermal and microwave-solvothermal methods , 2003 .

[194]  Absar Ahmad,et al.  Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles , 2003, Biotechnology progress.

[195]  K. Suslick,et al.  Sonochemical Preparation of Nanostructured Catalysts , 1996 .

[196]  K. Suslick,et al.  Sonochemical synthesis of amorphous iron , 1991, Nature.

[197]  M. Sillanpää Micronutrient Assessment at the Country Level: An International Study , 1990 .