GPCR agonist binding revealed by modeling and crystallography.

[1]  R. Abagyan,et al.  Molecular basis of antihistamine specificity against human histamine H1 receptor , 2011 .

[2]  Ruben Abagyan,et al.  Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. , 2011, Structure.

[3]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[4]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[5]  Jonathan S. Mason,et al.  Progress in Structure Based Drug Design for G Protein-Coupled Receptors , 2011, Journal of medicinal chemistry.

[6]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[7]  Lisa M Simpson,et al.  Modeling GPCR active state conformations: The β2‐adrenergic receptor , 2011, Proteins.

[8]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[9]  S. Vilar,et al.  In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor. , 2011, Journal of molecular graphics & modelling.

[10]  Gebhard F. X. Schertler,et al.  The structural basis of agonist-induced activation in constitutively active rhodopsin , 2011, Nature.

[11]  Ruben Abagyan,et al.  Structure based prediction of subtype-selectivity for adenosine receptor antagonists , 2011, Neuropharmacology.

[12]  P. Sexton,et al.  Allosteric modulation of G protein-coupled receptors: A pharmacological perspective , 2011, Neuropharmacology.

[13]  G. Milligan,et al.  When simple agonism is not enough: Emerging modalities of GPCR ligands , 2011, Molecular and Cellular Endocrinology.

[14]  Stefano Vanni,et al.  Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations , 2011, PLoS Comput. Biol..

[15]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[16]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[17]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[18]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[19]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[20]  R. Abagyan,et al.  Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. , 2010, Journal of the American Chemical Society.

[21]  A. Gilchrist GPCR Molecular Pharmacology and Drug Targeting: Shifting Paradigms and New Directions , 2010 .

[22]  Ruben Abagyan,et al.  Structure and Modeling of GPCRs: Implications for Drug Discovery , 2010 .

[23]  Laurence J. Miller,et al.  Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery , 2010, Pharmacological Reviews.

[24]  Vsevolod Katritch,et al.  Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues. , 2010, The Journal of biological chemistry.

[25]  Brian K. Shoichet,et al.  Structure-Based Discovery of A2A Adenosine Receptor Ligands , 2010, Journal of medicinal chemistry.

[26]  Ruben Abagyan,et al.  Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. , 2010, Journal of medicinal chemistry.

[27]  Ruben Abagyan,et al.  GPCR 3D homology models for ligand screening: Lessons learned from blind predictions of adenosine A2a receptor complex , 2010, Proteins.

[28]  J. Wess,et al.  Structural basis of the selectivity of the beta(2)-adrenergic receptor for fluorinated catecholamines. , 2009, Bioorganic & medicinal chemistry.

[29]  Kimberly A. Reynolds,et al.  Analysis of full and partial agonists binding to β2‐adrenergic receptor suggests a role of transmembrane helix V in agonist‐specific conformational changes , 2009, Journal of molecular recognition : JMR.

[30]  Christopher G Tate,et al.  Development and crystallization of a minimal thermostabilised G protein-coupled receptor. , 2009, Protein expression and purification.

[31]  Dov Barak,et al.  Evaluation of homology modeling of G-protein-coupled receptors in light of the A(2A) adenosine receptor crystallographic structure. , 2009, Journal of medicinal chemistry.

[32]  Thomas M Frimurer,et al.  Ligand binding and micro-switches in 7TM receptor structures. , 2009, Trends in pharmacological sciences.

[33]  Peter Kolb,et al.  Structure-based discovery of β2-adrenergic receptor ligands , 2009, Proceedings of the National Academy of Sciences.

[34]  Ron O Dror,et al.  Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations , 2009, Proceedings of the National Academy of Sciences.

[35]  Ron O. Dror,et al.  Identification Of Two Distinct Inactive Conformations Of The Beta-2 Adrenergic Receptor Reconciles Structural And Biochemical Observations , 2009 .

[36]  Ruben Abagyan,et al.  Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. , 2009, Journal of medicinal chemistry.

[37]  Ruben Abagyan,et al.  Identifying conformational changes of the β2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators , 2009, J. Comput. Aided Mol. Des..

[38]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[39]  Kenneth Jones,et al.  Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: Identification of active compounds. , 2008, Bioorganic & medicinal chemistry letters.

[40]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[41]  D. Rognan,et al.  Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. , 2008, Journal of medicinal chemistry.

[42]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[43]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[44]  C. Altenbach,et al.  High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation , 2008, Proceedings of the National Academy of Sciences.

[45]  Nagarajan Vaidehi,et al.  Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. , 2008, Biophysical journal.

[46]  Sid Topiol,et al.  Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. , 2008, Bioorganic & medicinal chemistry letters.

[47]  B. Kobilka,et al.  New G-protein-coupled receptor crystal structures: insights and limitations. , 2008, Trends in pharmacological sciences.

[48]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[49]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[50]  B. Kobilka G protein coupled receptor structure and activation. , 2007, Biochimica et biophysica acta.

[51]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[52]  Henri Xhaard,et al.  Molecular evolution of adrenoceptors and dopamine receptors: implications for the binding of catecholamines. , 2006, Journal of medicinal chemistry.

[53]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[54]  J. Changeux,et al.  Allosteric Mechanisms of Signal Transduction , 2005, Science.

[55]  J. Tyndall,et al.  GPCR agonists and antagonists in the clinic. , 2005, Medicinal chemistry (Shariqah (United Arab Emirates)).

[56]  G. Liapakis,et al.  Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the beta2 adrenergic receptor. , 2004, Molecular pharmacology.

[57]  M. Lohse,et al.  Mutation of Asn293 to Asp in transmembrane helix VI abolishes agonist-induced but not constitutive activity of the beta(2)-adrenergic receptor. , 2002, Molecular pharmacology.

[58]  J. Ballesteros,et al.  Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. , 2002, The Journal of biological chemistry.

[59]  J. Ballesteros,et al.  The Forgotten Serine , 2000, The Journal of Biological Chemistry.

[60]  T. Nagao,et al.  Ser203 as well as Ser204 and Ser207 in fifth transmembrane domain of the human β2‐adrenoceptor contributes to agonist binding and receptor activation , 1999, British journal of pharmacology.

[61]  A. IJzerman,et al.  Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[63]  R. Abagyan,et al.  Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. , 1994, Journal of molecular biology.

[64]  C. Strader,et al.  Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. , 1989, The Journal of biological chemistry.

[65]  C. Strader,et al.  Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. , 1988, The Journal of biological chemistry.

[66]  Ruben Abagyan,et al.  Ligand-guided receptor optimization. , 2012, Methods in molecular biology.

[67]  R. Abagyan,et al.  GPCR 3 D homology models for ligand screening : Lessons learned from blind predictions of adenosine A 2 a receptor complex , 2009 .

[68]  Helgi B. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[69]  P. Molinari,et al.  Catechol-binding serines of beta(2)-adrenergic receptors control the equilibrium between active and inactive receptor states. , 2000, Molecular pharmacology.

[70]  J. Ballesteros,et al.  The Forgotten Serine A CRITICAL ROLE FOR Ser-203 5.42 IN LIGAND BINDING TO AND ACTIVATION OF THE b 2 -ADRENERGIC RECEPTOR* , 2000 .

[71]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.