HOT: A Concurrent Automated Theorem Prover Based on Higher-Order Tableaux
暂无分享,去创建一个
[1] S. N. Talukdar,et al. COPS: a system for constructing multiple blackboards , 1988 .
[2] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[3] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[4] Karsten Konrad,et al. Higher-Order Automated Theorem Proving for Natural Language Semantics , 1998 .
[5] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[6] Gert Smolka. The Oz Programming Model , 1996 .
[7] Dale A. Miller,et al. Proofs in Higher-Order Logic , 1983 .
[8] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[9] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[10] H. P Nii,et al. Blackboard Systems , 1986 .
[11] Christoph Benzmüller,et al. A calculus and a system architecture for extensional higher-order resolution , 1997 .
[12] Karsten Konrad,et al. Higher{order Coloured Uniication: a Linguistic Application , 1997 .
[13] Wayne Snyder,et al. Complete Sets of Transformations for General E-Unification , 1989, Theor. Comput. Sci..
[14] Melvin Fitting,et al. First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.
[15] Zinaida Trybulec,et al. Boolean Properties of Sets , 1990 .
[16] Michael Kohlhase,et al. Higher-Order Tableaux , 1995, TABLEAUX.
[17] Michael Kohlhase,et al. A mechanization of sorted higher-order logic based on the resolution principle , 1994 .
[18] Volker Sorge,et al. ΩMEGA : Towards a mathematical assistant , 1997 .
[19] Volker Sorge,et al. Omega: Towards a Mathematical Assistant , 1997, CADE.