HOT: A Concurrent Automated Theorem Prover Based on Higher-Order Tableaux

Hot is an automated higher-order theorem prover based on HTE, an extensional higher-order tableaux calculus. The first part of this paper introduces an improved variant of the calculus which closely corresponds to the proof procedure implemented in Hot. The second part discusses Hot's design that can be characterized as a concurrent blackboard architecture. We show the usefulness of the implementation by including benchmark results for over one hundred solved problems from logic and set theory.

[1]  S. N. Talukdar,et al.  COPS: a system for constructing multiple blackboards , 1988 .

[2]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[3]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[4]  Karsten Konrad,et al.  Higher-Order Automated Theorem Proving for Natural Language Semantics , 1998 .

[5]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[6]  Gert Smolka The Oz Programming Model , 1996 .

[7]  Dale A. Miller,et al.  Proofs in Higher-Order Logic , 1983 .

[8]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[9]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[10]  H. P Nii,et al.  Blackboard Systems , 1986 .

[11]  Christoph Benzmüller,et al.  A calculus and a system architecture for extensional higher-order resolution , 1997 .

[12]  Karsten Konrad,et al.  Higher{order Coloured Uniication: a Linguistic Application , 1997 .

[13]  Wayne Snyder,et al.  Complete Sets of Transformations for General E-Unification , 1989, Theor. Comput. Sci..

[14]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[15]  Zinaida Trybulec,et al.  Boolean Properties of Sets , 1990 .

[16]  Michael Kohlhase,et al.  Higher-Order Tableaux , 1995, TABLEAUX.

[17]  Michael Kohlhase,et al.  A mechanization of sorted higher-order logic based on the resolution principle , 1994 .

[18]  Volker Sorge,et al.  ΩMEGA : Towards a mathematical assistant , 1997 .

[19]  Volker Sorge,et al.  Omega: Towards a Mathematical Assistant , 1997, CADE.