Optimizing Thin Film Tool Coatings Using a Finite Element Computer Simulator

ABSTRACT The application of thin, hard coatings is one of the most effective ways to protect an engineering component operating under heavy contact. We describe a computer experiment for improving the performance of a multilayer titanium nitride/titanium coating architecture using a computational simulator based on an axisymmetric finite element model. From 146 simulator runs made in two sets, the stresses in the coating material were evaluated and used to build a metamodel for optimizing the multilayer system. Complicating features of this engineering application were (1) a nonrectangular input region of coating designs and (2) opposing objectives to be minimized simultaneously.

[1]  Charles Audet,et al.  Multiobjective Optimization Through a Series of Single-Objective Formulations , 2008, SIAM J. Optim..

[2]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[3]  K. Bouzakis,et al.  Wear development of cemented carbide inserts coated with mono and multilayer PVD films, considering their strength properties, adhesion and the cutting loads , 2006 .

[4]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[5]  Erin R. Leatherman Designs for Computer Experiments that Minimize the Weighted Integrated Mean Square Prediction Error , 2014 .

[6]  F. Bobaru,et al.  Optimization of Multilayer Wear-Resistant Thin Films Using Finite Element Analysis on Stiff and Compliant Substrates , 2006 .

[7]  J. Hutchinson,et al.  Nonlinear delamination mechanics for thin films , 1997 .

[8]  R. Shivpuri,et al.  A cohesive zone finite element approach to model tensile cracks in thin film coatings , 2007 .

[9]  Fangfang Sun,et al.  A comparison of two metamodel-based methodologies for multiple criteria simulation optimization using an injection molding case study , 2013 .

[10]  Christine M. Anderson-Cook,et al.  Adapting the Hypervolume Quality Indicator to Quantify Trade-offs and Search Efficiency for Multiple Criteria Decision Making Using Pareto Fronts , 2013, Qual. Reliab. Eng. Int..

[11]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[12]  M. Thouless Cracking and delamination of coatings , 1991 .

[13]  Shiyu Zhou,et al.  A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors , 2011, Technometrics.

[14]  Christine M. Anderson-Cook,et al.  Optimization of Designed Experiments Based on Multiple Criteria Utilizing a Pareto Frontier , 2011, Technometrics.

[15]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[16]  T. Santner,et al.  Computer experiments: multiobjective optimization and sensitivity analysis , 2011 .

[17]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[18]  Thomas J. Santner,et al.  Noncollapsing Space-Filling Designs for Bounded Nonrectangular Regions , 2012, Technometrics.

[19]  D. Montgomery,et al.  Comparing Computer Experiments for the Gaussian Process Model Using Integrated Prediction Variance , 2013 .

[20]  S. Bull,et al.  Multilayer coatings for improved performance , 1996 .

[21]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[22]  Peter Z. G. Qian,et al.  Gaussian Process Models for Computer Experiments With Qualitative and Quantitative Factors , 2008, Technometrics.

[23]  Philip J. Martin,et al.  Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers , 2008 .

[24]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[25]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[26]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[27]  R. Taylor The Finite Element Method, the Basis , 2000 .

[28]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[29]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[30]  Dick den Hertog,et al.  Constrained Maximin Designs for Computer Experiments , 2003, Technometrics.

[31]  C. Subramanian,et al.  Review of multicomponent and multilayer coatings for tribological applications , 1993 .

[32]  K. Ma,et al.  Examination of mechanical properties and failure mechanisms of TiN and Ti−TiN multilayer coatings , 1995 .

[33]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[34]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[35]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[36]  V. Jayaram,et al.  Toughening through multilayering in TiN–AlTiN films , 2007 .

[37]  H. Holleck,et al.  Multilayer PVD coatings for wear protection , 1995 .

[38]  S. R. Searle,et al.  Restricted Maximum Likelihood (REML) Estimation of Variance Components in the Mixed Model , 1976 .

[39]  James A. Norris,et al.  An introduction to tribology. , 2008, Journal of surgical orthopaedic advances.

[40]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .