Analog photonic fractional signal processing

Abstract In this work, we provide an up to date overview on the subject of photonic fractional signal processing, including both, in-fiber and waveguide on-chip technology. Thus, we discuss in detail fractional differentiation, fractional integration, fractional Hilbert transforms, and finally, fractional Fourier transforms. In each case, the underlying mathematical principles are explained for each operation, together with a short historical discussion in the context of classical optics. After that, the different proposals to perform these operations photonically on the complex field envelope of a given light pulse are presented, divided according to its working principle. Finally, current applications for these operators are also discussed, as well as some of its future possibilities are envisaged.

[1]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[2]  José Azaña,et al.  Stabilization of a fiber-optic two-arm interferometer for ultra-short pulse signal processing applications. , 2008, Applied optics.

[3]  J. Lancis,et al.  Proposal of time-resolved chirp-measurement through all-optical in-fiber mathematical operators , 2010 .

[4]  Experimental considerations and scaling property of the fractional Fourier transform , 1998 .

[5]  L. Poladian,et al.  Simple grating synthesis algorithm. , 2000, Optics letters.

[6]  Sercan Ö Arık,et al.  Fundamental structure of Fresnel diffraction: natural sampling grid and the fractional Fourier transform. , 2011, Optics letters.

[7]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[8]  Proposal and Design of a Photonic In-Fiber Fractional Hilbert Transformer , 2010, IEEE Photonics Technology Letters.

[9]  Ljubisa Stankovic,et al.  Signal reconstruction from two close fractional Fourier power spectra , 2003, IEEE Trans. Signal Process..

[10]  Xiaojun Zhu,et al.  Fractional optical Hilbert transform using phase shifted fiber Bragg gratings , 2011 .

[11]  B. Little,et al.  First and second order all-optical integrating functions in a photonic integrated circuit , 2017, 1705.10421.

[12]  José Azaña,et al.  Stable all-fiber photonic temporal differentiator using a long-period fiber grating interferometer , 2009 .

[13]  J. Azaña,et al.  Hilbert transformers based on fiber Bragg gratings in transmission , 2015, 2015 Photonics North.

[14]  Xi Xiao,et al.  Tunable fractional-order differentiator using an electrically tuned silicon-on-isolator Mach-Zehnder interferometer. , 2014, Optics express.

[15]  J. Azaña,et al.  Arbitrary Time-Limited Optical Pulse Processors Based on Transmission Bragg Gratings , 2014, IEEE Photonics Technology Letters.

[16]  Jianping Yao,et al.  All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. , 2010, Optics letters.

[17]  N. Zhu,et al.  A tunable photonic temporal integrator with ultra-long integration time windows based on Raman-gain assisted phase-shifted silicon Bragg gratings , 2016 .

[18]  M. Andrés,et al.  Photonic fractional Fourier transformer with a single dispersive device. , 2013, Optics express.

[19]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[20]  Roberto Morandotti,et al.  Ultrafast all-optical differentiators. , 2006, Optics express.

[21]  Linjie Zhou,et al.  Fractional-order photonic differentiator using an on-chip microring resonator. , 2014, Optics letters.

[22]  J. Azana,et al.  Novel long period fiber grating-based filter configuration enabling arbitrary linear filtering characteristics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[23]  Instantaneous frequency measurement by in-fiber 0.5th order fractional differentiation , 2016 .

[24]  A. Torre,et al.  Chapter 7 – The fractional Fourier transform and some of its applications to optics , 2002 .

[25]  A W Lohmann,et al.  Optical implementation of the fractional Hilbert transform for two-dimensional objects. , 1997, Applied Optics.

[26]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[27]  H. Haus Applications of Nonlinear Fiber Optics , 2002 .

[28]  J. Skaar,et al.  On the synthesis of fiber Bragg gratings by layer peeling , 2001 .

[29]  Young-Geun Han,et al.  Development of core mode blocker with H/sub 2/-loaded Ge-B codoped fibres , 2003 .

[30]  Hans Wolter,et al.  Die Minimumstrahlkennzeichnung als Mittel zur Genauigkeitssteigerung optischer Messungen und als methodisches Hilfsmittel zum Ersatz des Strahlbegriffes , 1950 .

[31]  Jianping Yao,et al.  Tunable Fractional Order Temporal Differentiator by Optically Pumping a Tilted Fiber Bragg Grating , 2012, IEEE Photonics Technology Letters.

[32]  Jianping Yao,et al.  Photonic Fractional-Order Differentiator Using an SOI Microring Resonator With an MMI Coupler , 2013, IEEE Photonics Technology Letters.

[33]  Fractional-order Fourier analysis for ultrashort pulse characterization. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  J. Davis,et al.  Analysis of the fractional hilbert transform. , 1998, Applied optics.

[35]  Ping Xue,et al.  Optical computing for optical coherence tomography , 2016, Scientific reports.

[36]  Feced,et al.  Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Jacques Albert,et al.  Continuously Tunable Photonic Fractional Temporal Differentiator Based on a Tilted Fiber Bragg Grating , 2011, IEEE Photonics Technology Letters.

[38]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[39]  Michalis N. Zervas,et al.  An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings , 1999 .

[40]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[41]  Hugues Guillet de Chatellus,et al.  Fractional Fourier transform-based description of the Talbot effect: application to analog signal processing , 2017 .

[42]  D. Kane,et al.  Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating , 1993 .

[43]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1997, IEEE Trans. Signal Process..

[44]  José Azaña,et al.  Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator. , 2008, Optics letters.

[46]  M. Yamada,et al.  Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. , 1987, Applied optics.

[47]  Kerry Hinton,et al.  Dispersion compensation using apodized Bragg fiber gratings in transmission , 1998 .

[48]  M. Andrés,et al.  Long-period grating assisted fractional differentiation of highly chirped light pulses , 2016 .

[49]  José Azaña,et al.  All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. , 2009, Optics letters.

[50]  D Mendlovic,et al.  Fractional Fourier transform: simulations and experimental results. , 1995, Applied optics.

[51]  C. Cuadrado-Laborde,et al.  In-fiber all-optical fractional differentiator. , 2009, Optics letters.

[52]  M Brunel,et al.  Characterization of chirped pulses with the fractional-order Fourier transformation. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  S. Das Functional Fractional Calculus , 2011 .

[54]  J. K. Brenne,et al.  Design of grating-assisted codirectional couplers with discrete inverse-scattering algorithms , 2003 .

[55]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[56]  Ming Li,et al.  Continuously Tunable Time Delay Using an Optically Pumped Linear Chirped Fiber Bragg Grating , 2011, Journal of Lightwave Technology.

[57]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[58]  M. Fernández-Alonso,et al.  Fractional derivative Fourier plane filter for phase-change visualization. , 1997, Applied optics.

[59]  M A Muriel,et al.  Real-time Fourier transformer based on fiber gratings. , 1999, Optics letters.

[60]  R. Rutman,et al.  On physical interpretations of fractional integration and differentiation , 1995 .

[61]  A. Lohmann,et al.  IV: Fractional Transformations in Optics , 1998 .

[62]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[63]  Review of photonic Hilbert transformers , 2013 .

[64]  A. Lohmann,et al.  Fractional fourier transform: photonic implementation. , 1994, Applied optics.

[65]  Michalis N. Zervas,et al.  Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask , 1995 .

[66]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[67]  V. T. Gopakumar,et al.  Design of all-optical integrators and differentiators using Fabry-Perot filters based on fiber Bragg gratings , 2016, Photonic Network Communications.

[68]  J. Hua,et al.  Observing the fractional Fourier transform by free-space Fresnel diffraction. , 1997, Applied optics.

[69]  S Barcelos,et al.  Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. , 1995, Optics letters.

[70]  M. Andrés,et al.  Proposal and design of an in-fiber all-optical fractional integrator , 2010 .

[71]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[72]  J. Azaña,et al.  Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings. , 2012, Optics letters.

[73]  Jianping Yao,et al.  Photonic-Assisted Tunable Microwave Pulse Fractional Hilbert Transformer Based on a Temporal Pulse Shaping System , 2011, IEEE Photonics Technology Letters.

[74]  José Azaña,et al.  Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping , 2002 .

[75]  P. Pellat-Finet Fresnel diffraction and the fractional-order Fourier transform. , 1994, Optics letters.

[76]  I. Walmsley,et al.  Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. , 1998, Optics letters.

[77]  J. van Howe,et al.  Ultrafast optical signal processing based upon space-time dualities , 2006, Journal of Lightwave Technology.

[78]  Johannes Skaar Synthesis of fiber Bragg gratings for use in transmission , 2001 .

[79]  Jianping Yao,et al.  Experimental Demonstration of a Wideband Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg Grating , 2010, IEEE Photonics Technology Letters.

[80]  M. Andrés,et al.  Experimental demonstration of fractional order differentiation using a long-period grating-based in-fiber modal interferometer , 2016 .

[81]  H. Kogelnik,et al.  Filter response of nonuniform almost-periodic structures , 1976, The Bell System Technical Journal.

[82]  P. Pérez-Millán,et al.  Phase recovery by using optical fiber dispersion. , 2014, Optics letters.

[83]  Miguel V. Andrés,et al.  Design of an ultra-broadband all-optical fractional differentiator with a long-period fiber grating , 2011 .

[84]  A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Photonic Microwave Delay-Line Filter Using a Polarization Modulator , 2011, IEEE Photonics Technology Letters.

[85]  J. Azaña,et al.  Ultrafast all-optical first- and higher-order differentiators based on interferometers. , 2007, Optics letters.

[86]  José Azaña,et al.  Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. , 2007, Optics express.

[87]  Christian Cuadrado-Laborde,et al.  All-optical ultrafast fractional differentiator , 2008 .

[88]  Christian Cuadrado-Laborde,et al.  Periodic pulse train conformation based on the temporal Radon–Wigner transform , 2007 .

[89]  B. Lee,et al.  Dependence of fringe spacing on the grating separation in a long-period fiber grating pair. , 1999, Applied optics.

[90]  D Mendlovic,et al.  Fractional Hilbert transform. , 1996, Optics letters.

[91]  Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer. , 2016, Optics letters.

[92]  M. Andrés,et al.  Self-referenced phase reconstruction proposal of GHz bandwidth non-periodical optical pulses by in-fiber semi-differintegration , 2011 .

[93]  T. Erdogan Fiber grating spectra , 1997 .

[94]  Morten Ibsen,et al.  Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings , 2002 .

[95]  Roberto Morandotti,et al.  All-optical 1st and 2nd order integration on a chip. , 2011, Optics express.