Approximating Polygons and Subdivisions with Minimum Link Paths

We study several variations on one basic approach to the task of simplifying a plane polygon or subdivision: Fatten the given object and construct an approximation inside the fattened region. We investigate fattening by convolving the segments or vertices with disks and attempt to approximate objects with the minimum number of line segments, or with near the minimum, by using efficient greedy algorithms. We give some variants that have linear or O(n log n) algorithms approximating polygonal chains of n segments. We also show that approximating subdivisions and approximating with chains with. no self-intersections are NP-hard.

[1]  B. Buttenfield TREATMENT OF THE CARTOGRAPHIC LINE , 1985 .

[2]  S. Louis Hakimi,et al.  Fitting polygonal functions to a set of points in the plane , 1991, CVGIP Graph. Model. Image Process..

[3]  David G. Kirkpatrick,et al.  Implicitly Searching Convolutions and Computing Depth of Collision , 1990, SIGAL International Symposium on Algorithms.

[4]  E. R. White Assessment of Line-Generalization Algorithms Using Characteristic Points , 1985 .

[5]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[6]  M. Iri,et al.  Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .

[7]  Franco P. Preparata,et al.  An optimal real-time algorithm for planar convex hulls , 1979, CACM.

[8]  James R. Munkres,et al.  Topology; a first course , 1974 .

[9]  Subir Kumar Ghosh Computing the Visibility Polygon from a Convex Set and Related Problems , 1991, J. Algorithms.

[10]  Hiroshi Imai,et al.  Computational-geometric methods for polygonal approximations of a curve , 1986, Comput. Vis. Graph. Image Process..

[11]  Azriel Rosenfeld,et al.  Axial representations of shape , 1986, Computer Vision Graphics and Image Processing.

[12]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[13]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[14]  J. Hershberger,et al.  Speeding Up the Douglas-Peucker Line-Simplification Algorithm , 1992 .

[15]  Helmut Alt,et al.  Approximation of Convex Polygons , 1990, ICALP.

[16]  Hiroshi Imai,et al.  An optimal algorithm for approximating a piecewise linear function , 1986 .

[17]  Michael Blakemore,et al.  Part 4: Mathematical, Algorithmic and Data Structure Issues: Generalisation and Error in Spatial Data Bases , 1984 .

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.

[20]  S. Suri A linear time algorithm with minimum link paths inside a simple polygon , 1986 .

[21]  Helmut Alt,et al.  Measuring the resemblance of polygonal curves , 1992, SCG '92.

[22]  Robert B McMaster,et al.  A Statistical Analysis of Mathematical Measures for Linear Simplification , 1986 .

[23]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[24]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[25]  Robert B McMaster,et al.  The Integration Of Simplification And Smoothing Algorithms In Line Generalization , 1989 .

[26]  Rephael Wenger,et al.  Ordered stabbing of pairwise disjoint convex sets in linear time , 1991, Discret. Appl. Math..

[27]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[28]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[29]  Joseph O'Rourke,et al.  An on-line algorithm for fitting straight lines between data ranges , 1981, CACM.

[30]  Leonidas J. Guibas,et al.  A kinetic framework for computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[31]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[32]  Robert B McMaster,et al.  Automated Line Generalization , 1987 .

[33]  A. Melkman,et al.  On Polygonal Chain Approximation , 1988 .

[34]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[35]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..