Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+

We describe an alternative procedure for obtaining approximate Brueckner orbitals in ab initio electronic structure theory. Whereas approximate Brueckner orbitals have traditionally been obtained by mixing the orbitals until the coefficients of singly substituted determinants in the many-electron wave function become zero, we remove singly substituted determinants at the outset and obtain orbitals which minimize the total electronic energy. Such orbitals may be described as variational Brueckner orbitals. These two procedures yield the same set of exact Brueckner orbitals in the full configuration interaction limit but differ for truncated wave functions. We consider the simplest variant of this approach in the context of coupled-cluster theory, optimizing orbitals for the coupled-cluster doubles (CCD) model. An efficient new method is presented for solving the coupled equations defining the energy, doubles amplitudes, and orbital mixing parameters. Results for several small molecules indicate nearly iden...

[1]  M. Head‐Gordon,et al.  Size-consistent Brueckner theory limited to double and triple substitutions , 1990 .

[2]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[3]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[4]  Martin Head-Gordon,et al.  Optimization of wave function and geometry in the finite basis Hartree-Fock method , 1988 .

[5]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[6]  P. Bunker,et al.  A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule , 1979 .

[7]  M. Jacox,et al.  The vibrational spectra of molecular ions isolated in solid neon. II. O+4 and O−4 , 1989 .

[8]  N. Handy,et al.  Comparison of the Brueckner and coupled‐cluster approaches to electron correlation , 1992 .

[9]  Nicholas C. Handy,et al.  Size-consistent Brueckner theory limited to double substitutions , 1989 .

[10]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[11]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[12]  H. Schaefer,et al.  Use of the molecular orbital Hessian for self-consistent-field (SCF) wavefunctions , 1990 .

[13]  B. Brooks,et al.  The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications , 1979 .

[14]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[15]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[16]  P. Jørgensen,et al.  Comparison of coupled-cluster and Brueckner coupled-cluster calculations of molecular properties , 1993 .

[17]  K. Brueckner,et al.  NUCLEAR SATURATION AND TWO-BODY FORCES. II. TENSOR FORCES , 1954 .

[18]  T. Daniel Crawford,et al.  Spin-restricted Brueckner orbitals for coupled-cluster wavefunctions , 1997 .

[19]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[20]  N. Handy,et al.  The analytic gradient of the perturbative triplet excitations correction to the Brueckner doubles method , 1991 .

[21]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[22]  R. Bartlett,et al.  Analytic evaluation of energy gradients at the coupled‐cluster singles and doubles level using quasi‐restricted Hartree–Fock open‐shell reference functions , 1991 .

[23]  D. A. Horner,et al.  The lithium superoxide radical: Symmetry breaking phenomena and potential energy surfaces , 1989 .

[24]  R. Lindh,et al.  The fraternal twins of quartet O+4 , 1994 .

[25]  N. Handy,et al.  Large basis set calculations using Brueckner theory , 1994 .

[26]  A. D. McLean,et al.  Symmetry breaking in molecular calculations and the reliable prediction of equilibrium geometries. The formyloxyl radical as an example , 1985 .

[27]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[28]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[29]  G. Scuseria An alternative expression for the perturbative triples correction to Brueckner coupled-cluster doubles theory , 1994 .

[30]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[31]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[32]  W. D. Allen,et al.  Hartree-Fock orbital instability envelopes in highly correlated single-reference wave functions , 1997 .

[33]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[34]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[35]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[36]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[37]  E. Davidson,et al.  Symmetry breaking in polyatomic molecules: real and artifactual , 1983 .

[38]  Henry F. Schaefer,et al.  The shape‐driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule , 1982 .

[39]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[40]  R. Bartlett,et al.  Property evaluation and orbital relaxation in coupled cluster methods , 1987 .

[41]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[42]  H. Schaefer,et al.  Interpretation of excited state Hartree–Fock analytic derivative anomalies for NO2 and HCO2 using the molecular orbital Hessian , 1991 .

[43]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[44]  J. Gauss,et al.  Analytic Evaluation of Second Derivatives of the Energy: Computational Strategies for the CCSD and CCSD(T) Approximations , 1997 .

[45]  Alistair P. Rendell,et al.  The analytic configuration interaction gradient method: The calculation of one electron properties , 1987 .

[46]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[47]  M. Jacox,et al.  Evidence for the stabilization of rectangular O+4 in solid neon , 1994 .

[48]  H. Schaefer,et al.  C3+ is bent , 1990 .

[49]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[50]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[51]  H. Schaefer,et al.  Analytic second derivatives in restricted Hartree–Fock theory. A method for high‐spin open‐shell molecular wave functions , 1982 .

[52]  T. Crawford,et al.  The C̃ 2A2 excited state of NO2: Evidence for a Cs equilibrium structure and a failure of some spin-restricted reference wavefunctions , 1997 .

[53]  R. Bartlett,et al.  On the choice of orbitals for symmetry breaking problems with application to NO3 , 1992 .

[54]  R. Bartlett,et al.  Analytic energy gradients for general coupled‐cluster methods and fourth‐order many‐body perturbation theory , 1986 .

[55]  Michael J. Frisch,et al.  Gradient theory applied to the Brueckner doubles method , 1991 .

[56]  R. Nesbet Brueckner's Theory and the Method of Superposition of Configurations , 1958 .

[57]  R. Bartlett,et al.  Coupled‐cluster open‐shell analytic gradients: Implementation of the direct product decomposition approach in energy gradient calculations , 1991 .

[58]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[59]  W. D. Allen,et al.  Is the oxywater radical cation more stable than neutral oxywater , 1996 .

[60]  R. Lindh,et al.  Symmetry breaking in O+4: an application of the Brueckner coupled-cluster method , 1994 .

[61]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .