Randomized Primal–Dual Proximal Block Coordinate Updates

In this paper, we propose a randomized primal–dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints. Assuming mere convexity, we establish its O(1 / t) convergence rate in terms of the objective value and feasibility measure. The framework includes several existing algorithms as special cases such as a primal–dual method for bilinear saddle-point problems (PD-S), the proximal Jacobian alternating direction method of multipliers (Prox-JADMM) and a randomized variant of the ADMM for multi-block convex optimization. Our analysis recovers and/or strengthens the convergence properties of several existing algorithms. For example, for PD-S our result leads to the same order of convergence rate without the previously assumed boundedness condition on the constraint sets, and for Prox-JADMM the new result provides convergence rate in terms of the objective value and the feasibility violation. It is well known that the original ADMM may fail to converge when the number of blocks exceeds two. Our result shows that if an appropriate randomization procedure is invoked to select the updating blocks, then a sublinear rate of convergence in expectation can be guaranteed for multi-block ADMM, without assuming any strong convexity. The new approach is also extended to solve problems where only a stochastic approximation of the subgradient of the objective is available, and we establish an $$O(1/\sqrt{t})$$O(1/t) convergence rate of the extended approach for solving stochastic programming.

[1]  Daniel Boley,et al.  Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..

[2]  Xiaoming Yuan,et al.  A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..

[3]  Caihua Chen,et al.  On the Convergence Analysis of the Alternating Direction Method of Multipliers with Three Blocks , 2013 .

[4]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[5]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[6]  Y. Ye,et al.  On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method , 2015 .

[7]  Guanghui Lan,et al.  Randomized First-Order Methods for Saddle Point Optimization , 2014, 1409.8625.

[8]  Kim-Chuan Toh,et al.  A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block , 2014, Asia Pac. J. Oper. Res..

[9]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[10]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[11]  Gareth M. James,et al.  The Constrained Lasso , 2012 .

[12]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[13]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[14]  Laurence A. Wolsey,et al.  Continuous knapsack sets with divisible capacities , 2016, Math. Program..

[15]  Wotao Yin,et al.  Block Stochastic Gradient Iteration for Convex and Nonconvex Optimization , 2014, SIAM J. Optim..

[16]  Xiaoming Yuan,et al.  Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming , 2012 .

[17]  Kim-Chuan Toh,et al.  On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions , 2015, 1502.00098.

[18]  Shiqian Ma,et al.  On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..

[19]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[20]  Shiqian Ma,et al.  Iteration Complexity Analysis of Multi-block ADMM for a Family of Convex Minimization Without Strong Convexity , 2015, Journal of Scientific Computing.

[21]  Kim-Chuan Toh,et al.  An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming , 2015, Mathematical Programming.

[22]  Rong An,et al.  Optimal Error Estimates of Linearized Crank–Nicolson Galerkin Method for Landau–Lifshitz Equation , 2016, J. Sci. Comput..

[23]  Guanghui Lan,et al.  Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization , 2013, SIAM J. Optim..

[24]  Tianyi Lin,et al.  On the Convergence Rate of Multi-Block ADMM , 2014, 1408.4265.

[25]  Lin Xiao,et al.  On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.

[26]  Gareth M. James,et al.  Penalized and Constrained Regression , 2013 .

[27]  Xiang Gao,et al.  On the Information-Adaptive Variants of the ADMM: An Iteration Complexity Perspective , 2017, Journal of Scientific Computing.

[28]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[29]  Ying Cui,et al.  On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions , 2016, J. Optim. Theory Appl..

[30]  Bingsheng He,et al.  On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming , 2015, SIAM J. Optim..

[31]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[32]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[33]  Yangyang Xu,et al.  Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization , 2017, Comput. Optim. Appl..

[34]  Shuzhong Zhang,et al.  First-Order Algorithms for Convex Optimization with Nonseparable Objective and Coupled Constraints , 2017 .

[35]  Kim-Chuan Toh,et al.  A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions , 2014, Mathematical Programming.

[36]  Ming Yan,et al.  Coordinate Friendly Structures, Algorithms and Applications , 2016, ArXiv.

[37]  Kim-Chuan Toh,et al.  A Convergent 3-Block SemiProximal Alternating Direction Method of Multipliers for Conic Programming with 4-Type Constraints , 2014, SIAM J. Optim..

[38]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[39]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[41]  Xiaoming Yuan,et al.  On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function , 2017, Comput. Optim. Appl..

[42]  Bingsheng He,et al.  Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming , 2017, Math. Oper. Res..

[43]  Xiaoming Yuan,et al.  The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex , 2014 .

[44]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[45]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[46]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[47]  Shuhuang Xiang,et al.  A Collocation Boundary Value Method for Linear Volterra Integral Equations , 2017, J. Sci. Comput..

[48]  R. Rockafellar LARGE-SCALE EXTENDED LINEAR-QUADRATIC PROGRAMMING AND MULTISTAGE OPTIMIZATION R.T.Rockafellar Abstract. Optimization problems in discrete time can be modeled more flexibly by extended linear- quadratic programming than by traditional linear or quadratic programming, because penalties and other expre , 1991 .

[49]  Wotao Yin,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.

[50]  Yangyang Xu,et al.  Hybrid Jacobian and Gauss-Seidel Proximal Block Coordinate Update Methods for Linearly Constrained Convex Programming , 2016, SIAM J. Optim..