High-level psychophysical tuning curves: simultaneous masking with different noise bandwidths.

Simultaneous-masked psychophysical tuning curves were measured with narrow-band noise maskers varying in bandwidth from 40 Hz to 800 Hz to determine the masker bandwidths at which combination-band detection cues no longer influence tuning-curve shapes. Tuning curves were obtained at 1000 and 4000 Hz from normal-hearing listeners using high-level (60 dB SPL) probe tones in quiet and in the presence of a broadband background noise to eliminate combination bands and other off-frequency listening cues that exist at high levels. High-level tuning curves revealed notches on the low-frequency sides. Those notches were eliminated with broad-band background noise, which indicates that combination bands can strongly influence the shapes of high-level tuning curves obtained with narrow-band maskers, primarily by steepening the low-frequency and tail slopes. Combination-band detection cues had a stronger influence at 4000 Hz than at 1000 Hz. As masker bandwidth increased, combination bands had less influence on tuning-curve shapes. These results suggest a possible relation between masker bandwidth and auditory critical bandwidth: combination bands affected the low-frequency sides of the tuning curves only when the masker bandwidth was less than the auditory critical bandwidth.