Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise

A strategy for controlling the stepsize in the numerical integration of stochastic differential equations (SDEs) is presented. It is based on estimating the pth mean of local errors. The strategy leads to stepsize sequences that are identical for all computed paths. For the family of Euler schemes for SDEs with small noise, we derive computable estimates for the dominating term of the pth mean of local errors and show that the strategy becomes efficient for reasonable stepsizes. Numerical experience is reported for test examples including scalar SDEs and a stochastic circuit model.

[1]  Kevin Burrage,et al.  A Variable Stepsize Implementation for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[2]  B. Øksendal Stochastic Differential Equations , 1985 .

[3]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[4]  Wolfgang Mathis,et al.  A thermodynamical approach to noise in non-linear networks , 1998, Int. J. Circuit Theory Appl..

[5]  Jessica G. Gaines,et al.  Variable Step Size Control in the Numerical Solution of Stochastic Differential Equations , 1997, SIAM J. Appl. Math..

[6]  Thomas Müller-Gronbach,et al.  Strong approximation of systems of stochastic differential equations , 2002 .

[7]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[8]  Klaus Ritter,et al.  Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..

[9]  P. Rentrop,et al.  Modeling, Simulation, and Optimization of Integrated Circuits , 2003 .

[10]  Jonathan C. Mattingly,et al.  An adaptive Euler–Maruyama scheme for SDEs: convergence and stability , 2006, math/0601029.

[11]  Susanne Mauthner,et al.  Step size control in the numerical solution of stochastic differential equations , 1998 .

[12]  G. Mil’shtein A Theorem on the Order of Convergence of Mean-Square Approximations of Solutions of Systems of Stochastic Differential Equations , 1988 .

[13]  Oliver Schein Stochastic differential algebraic equations in circuit simulation , 1999 .

[14]  K. Gustafsson,et al.  API stepsize control for the numerical solution of ordinary differential equations , 1988 .

[15]  R. Winkler Stochastic differential algebraic equations of index 1 and applications in circuit simulation , 2003 .

[16]  Werner Römisch,et al.  Stochastic DAEs in Circuit Simulation , 2003 .

[17]  Kevin Burrage,et al.  Numerical solutions of stochastic differential equations – implementation and stability issues , 2000 .

[18]  Xuerong Mao,et al.  Stochastic differential equations and their applications , 1997 .

[19]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Susanne Mauthner Schrittweitensteuerung bei der numerischen Lösung stochastischer Differentialgleichungen , 1999 .

[21]  Stefan Schäffler,et al.  Adams methods for the efficient solution of stochastic differential equations with additive noise , 2007, Computing.

[22]  Alper Demir,et al.  Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems , 1997 .

[23]  Gustaf Söderlind,et al.  The automatic control of numerical integration , 1998 .

[24]  Michael Günther,et al.  CAD based electric circuit modeling in industry. Pt. 2: Impact of circuit configurations and parameters , 1997 .

[25]  Renate Winkler Stochastic DAEs in Transient Noise Simulation , 2004 .

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[27]  G. N. Milstein,et al.  Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noises , 1997, SIAM J. Sci. Comput..

[28]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[29]  K. Ritter,et al.  Step size control for the uniform approximation of systems of stochastic differential equations with additive noise , 2000 .

[30]  Wolfgang Mathis,et al.  A thermodynamical approach to noise in non-linear networks , 1998 .

[31]  A. Rössler,et al.  Adaptive schemes for the numerical solution of SDEs: a comparison , 2002 .