A ternary EAM interatomic potential for U–Mo alloys with xenon

A new interatomic potential for a uranium–molybdenum system with xenon is developed in the framework of an embedded atom model using a force-matching technique and a dataset of ab initio atomic forces. The verification of the potential proves that it is suitable for the investigation of various compounds existing in the system as well as for simulation of pure elements: U, Mo and Xe. Computed lattice constants, thermal expansion coefficients, elastic properties and melting temperatures of U, Mo and Xe are consistent with the experimentally measured values. The energies of the point defect formation in pure U and Mo are proved to be comparable to the density-functional theory calculations. We compare this new U–Mo–Xe potential with the previously developed U and Mo–Xe potentials. A comparative study between the different potential functions is provided. The key purpose of the new model is to study the atomistic processes of defect evolution taking place in the U–Mo nuclear fuel. Here we use the potential to simulate bcc alloys containing 10 wt% of intermetallic Mo and U2Mo.

[1]  Graeme Ackland,et al.  Self-interstitials in V and Mo , 2002 .

[2]  Per Söderlind,et al.  Theory of the crystal structures of cerium and the light actinides , 1998 .

[3]  D. Keiser,et al.  High-density, low-enriched uranium fuel for nuclear research reactors , 2003 .

[4]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[5]  J C Hamilton,et al.  An embedded-atom potential for the Cu–Ag system , 2006 .

[6]  Byung‐Ho Lee,et al.  Molecular dynamics simulation of the pressure-volume-temperature data of xenon for a nuclear fuel , 2008 .

[7]  Andrew P. Horsfield,et al.  Self-interstitial atom defects in bcc transition metals: Group-specific trends , 2006 .

[8]  J. Wilkins,et al.  Force-matched embedded-atom method potential for niobium , 2010, 1003.2210.

[9]  J. L. Snelgrove,et al.  Low-temperature irradiation behavior of uranium–molybdenum alloy dispersion fuel☆ , 2002 .

[10]  C. S. Barrett,et al.  Crystal Structure Variations in Alpha Uranium at Low Temperatures , 1963 .

[11]  H. L. Johnston,et al.  High Temperature Structure and Thermal Expansion of Some Metals as Determined by X‐Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum , 1951 .

[12]  J. Li,et al.  A long-range U–Nb potential for the calculation of some chemical and physical properties of the U–Nb system , 2012 .

[13]  A. Dwight The uranium-molybdenum equilibrium diagram below 900° C , 1960 .

[14]  Han-Chen Huang,et al.  Quantum mechanical calculations of uranium phases and niobium defects in γ-uranium , 2008 .

[15]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[16]  S. J. Rothman,et al.  DIFFUSION IN GAMMA URANIUM , 1964 .

[17]  John J. Burke,et al.  Physical metallurgy of uranium alloys : proceedings of the Third Army Materials Technology Conference, held at Vail, Colorado, February 12-14, 1974 , 1976 .

[18]  M. Baskes,et al.  First principles calculations for defects in U , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Jun Li,et al.  Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices , 2002, Science.

[20]  M. Marinica,et al.  Ab initio calculations and interatomic potentials for iron and iron alloys : Achievements within the Perfect Project , 2010 .

[21]  R. Guanghui,et al.  Crystal structures, phase relationships, and magnetic phase transitions of R5M4 compounds (R = rare earths, M = Si, Ge) , 2013 .

[22]  J-J Étienne,et al.  Landolt-Börstein. Numerical data and functionnal relationships in science and technology, 1971 , 1972 .

[23]  R. Stoller,et al.  Atomistic studies of helium defect properties in bcc iron: Comparison of He–Fe potentials , 2010 .

[24]  A. Belonoshko Molecular dynamics of MgSiO3 perovskite at high pressures: Equation of state, structure, and melting transition , 1994 .

[25]  B. Wirth How Does Radiation Damage Materials? , 2007, Science.

[26]  D. Keiser,et al.  TEM characterization of U–7Mo/Al–2Si dispersion fuel irradiated to intermediate and high fission densities , 2012 .

[27]  M. Ross,et al.  Phase behavior of krypton and xenon to 50 GPa , 2002 .

[28]  M. I. Pascuet,et al.  Many-body interatomic U and Al–U potentials , 2012 .

[29]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[30]  P. Turchi,et al.  Density-functional study of U-Mo and U-Zr alloys , 2011 .

[31]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[32]  R. Hixson,et al.  Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies , 2007 .

[33]  D. Belashchenko Electron contribution to energy of alkali metals in the scheme of an embedded atom model , 2012 .

[34]  V. Stegailov,et al.  Atomistic Simulation of Clustering and Annihilation of Point Defects in Molybdenum , 2012 .

[35]  A. S. Boyarchenkov,et al.  Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions , 2011, 1103.6277.

[36]  Douglas E. Burkes,et al.  Properties of DU–10 wt% Mo alloys subjected to various post-rolling heat treatments ☆ , 2010 .

[37]  Gerard L. Hofman,et al.  An alternative explanation for evidence that xenon depletion, pore formation, and grain subdivision begin at different local burnups , 2000 .

[38]  Daniel M. Wachs,et al.  Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel , 2010 .

[39]  S. Dabos,et al.  Bulk modulus and P- V relationship up to 52 GPa of neptunium metal at room temperature , 1987 .

[40]  F. Delage,et al.  Metallic fuels for advanced reactors , 2009 .

[41]  R. Ditz,et al.  Systematics of transition-metal melting , 2001 .

[42]  V. Stegailov,et al.  Atomistic simulation of the premelting of iron and aluminum: Implications for high-pressure melting-curve measurements , 2009 .

[43]  J. Wills,et al.  Structural behavior of α-uranium with pressures to 100 GPa , 2003 .

[44]  R. Dubourg,et al.  Mechanistic modelling of urania fuel evolution and fission product migration during irradiation and heating , 2007 .

[45]  D. B. Boercker,et al.  High-pressure melting curves of argon, krypton, and xenon: deviation from corresponding states theory. , 2001, Physical review letters.

[46]  Douglas E. Burkes,et al.  Mechanical Properties of DU-xMo Alloys with x = 7 to 12 Weight Percent , 2009 .

[47]  Vladimir V. Stegailov,et al.  Derivation of kinetic coefficients by atomistic methods for studying defect behavior in Mo , 2012 .

[48]  A. B. Sivak,et al.  Diffusion of self-point defects in body-centered cubic iron crystal containing dislocations , 2010 .

[49]  E. K. Halteman The crystal structure of U2Mo , 1957 .

[50]  Cynthia A. Papesch,et al.  Thermo-physical properties of DU–10 wt.% Mo alloys , 2010 .

[51]  Ruoff,et al.  Static compression of metals Mo, Pb, and Pt to 272 GPa: Comparison with shock data. , 1990, Physical review. B, Condensed matter.

[52]  C. Ronchi,et al.  Extrapolated equation of state for rare gases at high temperatures and densities , 1981 .

[53]  J. Rest,et al.  Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium–molybdenum alloy fuel , 2009 .

[54]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[55]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part II: Molecular dynamics simulations , 2008 .

[56]  H. Cynn,et al.  Phase diagram of uranium at high pressures and temperatures , 1998 .

[57]  Y. Wu,et al.  Static EOS of uranium to 100 GPa pressure , 1990 .

[58]  Aleksandrov,et al.  X-ray study of equations of state of solid xenon and cesium iodide at pressures up to 55 GPa. , 1985, Physical review. B, Condensed matter.

[59]  Hakan Ozaltun,et al.  Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during Hot Isostatic Pressing , 2011 .

[60]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[61]  Blas P. Uberuaga,et al.  Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission , 2010, Science.

[62]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[63]  Gerard L. Hofman,et al.  Migration of minor actinides and lanthanides in fast reactor metallic fuel , 2009 .

[64]  V. Stegailov,et al.  Radiation-induced damage and evolution of defects in Mo , 2011 .

[65]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[66]  V. P. Sinha,et al.  Phase transformation of metastable cubic γ-phase in U-Mo alloys , 2010 .

[67]  R. Ahuja,et al.  Molecular dynamics study of phase transitions in Xe , 2002 .

[68]  Peter M. Derlet,et al.  Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals , 2007 .

[69]  W. Triftshäuser,et al.  Investigation of vacancy formation and phase transformations in uranium by positron annihilation , 1980 .

[70]  Douglas E. Burkes,et al.  Fresh Fuel Characterization of U-Mo Alloys , 2008 .

[71]  S. Dash,et al.  Thermophysical properties of U2Mo intermetallic , 2012 .

[72]  M. Nicol,et al.  Martensitic fcc-to-hcp transformation observed in xenon at high pressure. , 2001, Physical review letters.

[73]  G. Hofman,et al.  Metallic Fast Reactor Fuels , 2006 .

[74]  A. S. Boyarchenkov,et al.  High-precision molecular dynamics simulation of UO2–PuO2: Pair potentials comparison in UO2 , 2011 .

[75]  V. P. Sinha,et al.  Effect of molybdenum addition on metastability of cubic γ-uranium , 2010 .

[76]  Claudio Ronchi,et al.  Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide. , 2007, The Journal of chemical physics.

[77]  P. Brommer,et al.  Effective potentials for quasicrystals from ab-initio data , 2006, 0704.0163.

[78]  Johnson Alloy models with the embedded-atom method. , 1989, Physical review. B, Condensed matter.

[79]  M. Baskes,et al.  Atomistic properties of γ uranium , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.