Toughening mechanisms of the elytra of the diabolical ironclad beetle

[1]  P. Zavattieri,et al.  Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading. , 2019, Journal of the mechanical behavior of biomedical materials.

[2]  F. Barthelat,et al.  Bio-inspired “jigsaw”-like interlocking sutures: Modeling, optimization, 3D printing and testing , 2017 .

[3]  Francois Barthelat,et al.  Design, 3D printing and testing of architectured materials with bistable interlocks , 2017 .

[4]  S. D. Rider The complete mitochondrial genome of the desert darkling beetle Asbolus verrucosus (Coleoptera, Tenebrionidae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[5]  Mary C. Boyce,et al.  3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior , 2014 .

[6]  Carsten Werner,et al.  The multi-layered protective cuticle of Collembola: a chemical analysis , 2014, Journal of The Royal Society Interface.

[7]  Bharat Bhushan,et al.  Structure and mechanical properties of beetle wings: a review , 2012 .

[8]  Z. Dai,et al.  Structural design inspired by beetle elytra and its mechanical properties , 2012 .

[9]  E. Recuero,et al.  Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation , 2011, Molecular ecology.

[10]  M. Caterino,et al.  Contrasting patterns of phylogeographic relationships in sympatric sister species of ironclad beetles (Zopheridae: Phloeodes spp.) in California's Transverse Ranges , 2010, BMC Evolutionary Biology.

[11]  M. Ivie,et al.  A phylogenetic analysis of the tribe Zopherini with a review ofthe species and generic classification (Coleoptera: Zopheridae) , 2008 .

[12]  JiuRong Sun,et al.  Coupling between elytra of some beetles: Mechanism, forces and effect of surface texture , 2008, Science in China Series C: Life Sciences.

[13]  T. Hunt,et al.  A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation , 2007, Science.

[14]  G. Constantinides,et al.  Enhanced Stiffness of Amorphous Polymer Surfaces under Confinement of Localized Contact Loads , 2007 .

[15]  M. García‐París,et al.  Re-evaluation of the genera Phloeodes, Noserus and Nosoderma (Coleoptera: Zopheridae) with description of a new species of Nosoderma from northern México , 2006 .

[16]  L. Frantsevich,et al.  Geometry of elytra opening and closing in some beetles (Coleoptera, Polyphaga) , 2005, Journal of Experimental Biology.

[17]  T. Miyatake,et al.  Is death–feigning adaptive? Heritable variation in fitness difference of death–feigning behaviour , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[19]  S. Gorb,et al.  Exploring Biological Surfaces by Nanoindentation , 2004 .

[20]  Angela DiDomenico Astin,et al.  Finger force capability: measurement and prediction using anthropometric and myoelectric measures , 1999 .

[21]  Stanislav N. Gorb,et al.  Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera : Tenebrionidae) : design of co-opted fields of microtrichia and cuticle ultrastructure , 1998 .

[22]  W. Hamilton,et al.  Fog basking by the Namib Desert beetle, Onymacris unguicularis , 1976, Nature.

[23]  F. Barthelat,et al.  Bioinspired sutured materials for strength and toughness: Pullout mechanisms and geometric enrichments , 2018 .

[24]  Rolf Steinhilper,et al.  Assessment strategies for composite-metal joining technologies : A review , 2016 .

[25]  Blair E. Carlson,et al.  Joining of dissimilar materials , 2015 .

[26]  H. Greven,et al.  On the Architecture of Beetle Elytra , 2010 .

[27]  J. Lighton,et al.  Breathe softly, beetle: continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura. , 2008, Journal of insect physiology.