Energy-based fault detection for an autothermal reformer

PhD (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2016

[1]  G. van Schoor,et al.  Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach , 2012 .

[2]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[3]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[4]  Peter Tavner,et al.  Condition Monitoring for Device Reliability in Power Electronic Converters: A Review , 2010, IEEE Transactions on Power Electronics.

[5]  G. van Schoor,et al.  Enthalpy–entropy graph approach for the classification of faults in the main power system of a closed Brayton cycle HTGR , 2009 .

[6]  Sigurd Skogestad,et al.  A Natural Gas to Liquids Process Model for Optimal Operation , 2012 .

[7]  Douglas C. White Save Energy . Through Automation , 2010 .

[8]  Samuel H. Huang,et al.  System health monitoring and prognostics — a review of current paradigms and practices , 2006 .

[9]  S. Chan,et al.  Transient performance of an autothermal reformer—A 2-D modeling approach , 2005 .

[10]  M. Chandrashekar,et al.  Models of large-scale industrial energy systems—II , 1984 .

[11]  G. van Schoor,et al.  Fault diagnosis of generation IV nuclear HTGR components – Part I: The error enthalpy–entropy graph approach , 2012 .

[12]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[13]  Ying Peng,et al.  Current status of machine prognostics in condition-based maintenance: a review , 2010 .

[14]  Kaj Juslin,et al.  A companion model approach to modelling and simulation of industrial processes , 2005 .