Statistical shape characterization using the medial representation

The goal of the research presented in this dissertation is to improve the clinical understanding of processes that affect the shape of anatomical structures. Schizophrenia is an example of such a process: it is known to affect the shape of the hippocampus, but the precise nature of the morphological changes that it causes is not fully understood. This dissertation introduces novel statistical shape characterization methodology that can improve the understanding of shape-altering biological processes by (i) identifying the regions of the affected objects where these processes are most significantly manifested and (ii) expressing the effects of these processes in intuitive geometric terms. The following three new techniques are described and evaluated in this dissertation. (1) In an approach motivated by human form perception, the shape characterization problem is divided into a coarse-to-fine hierarchy of sub-problems that analyze shape at different locations and levels of detail, making it possible to compare the effects of shape altering processes on different object regions. Statistical features are based on the medial (skeletal) object representation, which can be used to decompose objects into simple components called figures and to measure the bending and widening of the figures. Such features make it possible to express shape variability in terms of bending and widening. (2) A new algorithm that identifies regions of biological objects that are most relevant for shape-based classification is developed. In the schizophrenia application, the algorithm is used to find the hippocampus locations most relevant for classification between schizophrenia patients and matched healthy controls. The algorithm fuses shape heuristics with existing feature selection methodology, effectively reducing the inherently combinatorial search space of the latter. (3) Biological objects in 3D and 2D are described using a novel medial representation that models medial loci and boundaries using continuous manifolds. The continuous medial representation is used in the deformable templates framework to segment objects in medical images. The representation allows arbitrary sampling that is needed by the hierarchical shape characterization method.

[1]  Stephen R. Aylward,et al.  Segmenting 3D Branching Tubular Structures Using Cores , 2003, MICCAI.

[2]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[3]  Gábor Székely,et al.  Multiscale Medial Loci and Their Properties , 2003, International Journal of Computer Vision.

[4]  Martin Styner,et al.  Statistical shape analysis of neuroanatomical structures based on medial models , 2003, Medical Image Anal..

[5]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[6]  Conglin Lu,et al.  A Markov Random Field Approach to Multi-scale Shape Analysis , 2003, Scale-Space.

[7]  Paul A. Yushkevich,et al.  Continuous medial representations for geometric object modeling in 2D and 3D , 2003, Image Vis. Comput..

[8]  Martin Styner,et al.  Object models in multiscale intrinsic coordinates via m-reps , 2003, Image Vis. Comput..

[9]  M. Miller,et al.  Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. , 2002, The American journal of psychiatry.

[10]  W. Eric L. Grimson,et al.  Discriminative Analysis for Image-Based Studies , 2002, MICCAI.

[11]  R. Kikinis,et al.  Amygdala–hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data , 2002, Psychiatry Research: Neuroimaging.

[12]  Stephen R. Aylward,et al.  Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction , 2002, IEEE Transactions on Medical Imaging.

[13]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[14]  Timothy F. Cootes,et al.  3D Statistical Shape Models Using Direct Optimisation of Description Length , 2002, ECCV.

[15]  Martin Styner,et al.  Three-dimensional medial shape representation incorporating object variability , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[17]  Martin Styner,et al.  Shape versus Size: Improved Understanding of the Morphology of Brain Structures , 2001, MICCAI.

[18]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[19]  W. Eric L. Grimson,et al.  Deformation Analysis for Shape Based Classification , 2001, IPMI.

[20]  P. Thomas Fletcher,et al.  Multi-scale 3-D Deformable Model Segmentation Based on Medial Description , 2001, IPMI.

[21]  Martin Styner,et al.  Medial Models Incorporating Object Variability for 3D Shape Analysis , 2001, IPMI.

[22]  Paul A. Yushkevich,et al.  Intuitive, Localized Analysis of Shape Variability , 2001, IPMI.

[23]  Tommi S. Jaakkola,et al.  Feature Selection and Dualities in Maximum Entropy Discrimination , 2000, UAI.

[24]  Andrew Thall,et al.  Deformable Solid Modeling using Sampled Medial Surfaces: A Multiscale Approach , 2000 .

[25]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Lee Markosian,et al.  Skin: a constructive approach to modeling free-form shapes , 1999, SIGGRAPH.

[27]  W. Eric L. Grimson,et al.  Statistical Shape Analysis Using Fixed Topology Skeletons: Corpus Callosum Study , 1999, IPMI.

[28]  George D. Stetten,et al.  Automated Identification and Measurement of Objects via Populations of Medial Primitives, with Application to Real Time 3D Echocardiography , 1999, IPMI.

[29]  Kaleem Siddiqi,et al.  Ligature instabilities in the perceptual organization of shape , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[30]  Mark A. Ganter,et al.  A skeletal-based solid editor , 1999, SMA '99.

[31]  M. Leyton Symmetry, Causality, Mind , 1999 .

[32]  Stephen M. Pizer,et al.  Usine Multiscale Medial Models to Guide Volume Visualization , 1999 .

[33]  James N. Damon,et al.  Properties of Ridges and Cores for Two-Dimensional Images , 1999, Journal of Mathematical Imaging and Vision.

[34]  Paul A. Yushkevich,et al.  Segmentation, registration, and measurement of shape variation via image object shape , 1999, IEEE Transactions on Medical Imaging.

[35]  Jason Miller,et al.  Relative critical sets in RR(N) and applications to image analysis , 1998 .

[36]  Jacob D. Furst,et al.  Marching Optimal-Parameter Ridges: An Algorithm to Extract Shape Loci in 3D Images , 1998, MICCAI.

[37]  Fernando Bello,et al.  Measuring Global and Local Spatial Correspondence Using Information Theory , 1998, MICCAI.

[38]  Paul S. Bradley,et al.  Parsimonious Least Norm Approximation , 1998, Comput. Optim. Appl..

[39]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[41]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[42]  M J Ackerman,et al.  The Visible Human Project , 1998, Proc. IEEE.

[43]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Sven J. Dickinson,et al.  Shock Graphs and Shape Matching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[45]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[46]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[47]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[48]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[49]  Stephen R. Aylward,et al.  Continuous mixture modeling via goodness‐of‐fit cores , 1997 .

[50]  Hemant D. Tagare,et al.  Non-rigid Curve Correspondence for Estimating Heart Motion , 1997, IPMI.

[51]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[52]  Christopher J. Taylor,et al.  Automatic Construction of Eigenshape Models by Genetic Algorithm , 1997, IPMI.

[53]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[54]  Paul S. Bradley,et al.  Feature Selection via Mathematical Programming , 1997, INFORMS J. Comput..

[55]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  M W Vannier,et al.  Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. , 1997, Radiology.

[57]  David H. Eberly,et al.  Ridges in Image and Data Analysis , 1996, Computational Imaging and Vision.

[58]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[59]  Edward L. Chaney,et al.  Segmentation of Medical Image Objects Using Deformable Shape Loci , 1996, IPMI.

[60]  R. Kikinis,et al.  Characterization and recognition of 3D organ shape in medical image analysis using skeletonization , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[61]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[62]  Guido Gerig,et al.  Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models , 1996, Medical Image Anal..

[63]  Jörg Peters,et al.  Curvature continuous spline surfaces over irregular meshes , 1996, Comput. Aided Geom. Des..

[64]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[65]  David H. Eberly,et al.  Zoom-Invariant Vision of Figural Shape: The Mathematics of Cores , 1996, Comput. Vis. Image Underst..

[66]  A Boxwala,et al.  Core-based portal image registration for automatic radiotherapy treatment verification. , 1995, International journal of radiation oncology, biology, physics.

[67]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[68]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[69]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[70]  Hemant D. Tagare,et al.  A geometric criterion for shape-based non-rigid correspondence , 1995, Proceedings of IEEE International Conference on Computer Vision.

[71]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1995, Proceedings of IEEE International Conference on Computer Vision.

[72]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[73]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[74]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..

[75]  Debasish Dutta,et al.  Boundary surface recovery from skeleton curves and surfaces , 1995, Comput. Aided Geom. Des..

[76]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[77]  P. J. Vermeer Medial axis transform to boundary representation conversion , 1994 .

[78]  David H. Eberly,et al.  Ridges for image analysis , 1994, Journal of Mathematical Imaging and Vision.

[79]  Christoph M. Hoffmann,et al.  Validity Determination for MAT Surface Representation , 1994, IMA Conference on the Mathematics of Surfaces.

[80]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[81]  Hervé Delingette,et al.  Simplex meshes: a general representation for 3D shape reconstruction , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[82]  Matthew J. McAuliffe,et al.  Stimulated Cores and their Applications in Medical Imaging , 1994 .

[83]  I Rock,et al.  Is a Perceived Shape Based on its Retinal Image? , 1993, Perception.

[84]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[86]  Gabriella Sanniti di Baja,et al.  Ridge points in Euclidean distance maps , 1992, Pattern Recognit. Lett..

[87]  Jules Bloomenthal,et al.  Convolution surfaces , 1991, SIGGRAPH.

[88]  Nicholas Ayache,et al.  Topological segmentation of discrete surfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[89]  Alan L. Yuille,et al.  3D symmetry-curvature duality theorems , 1990, Comput. Vis. Graph. Image Process..

[90]  Donald D. Hoffman,et al.  Parts of Visual Objects: An Experimental Test of the Minima Rule , 1989, Perception.

[91]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[92]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[93]  Michel Schmitt,et al.  Some examples of algorithm analysis in computational geometry by means of mathematical morphological techniques , 1988, Geometry and Robotics.

[94]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[95]  Michael Leyton,et al.  Symmetry-curvature duality , 1987, Comput. Vis. Graph. Image Process..

[96]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[97]  Peter Giblin,et al.  Local Symmetry of Plane Curves , 1985 .

[98]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[99]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[100]  King-Sun Fu,et al.  Stochastic skeleton modeling of objects , 1984, Comput. Vis. Graph. Image Process..

[101]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[102]  P. Danielsson Euclidean distance mapping , 1980 .

[103]  P. O. Bishop,et al.  End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. , 1979, Journal of neurophysiology.

[104]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[105]  Jan M. Van Campenhout,et al.  On the Possible Orderings in the Measurement Selection Problem , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[106]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[107]  L. F. Pau,et al.  Pattern Synthesis: Lectures in Pattern Theory, Vol. 1, U. Grenander. Springer-Verlag, New York/London (1976), 509, Applied Mathematical Sciences No. 18 , 1977 .

[108]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[109]  J. Gower Generalized procrustes analysis , 1975 .

[110]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[111]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[112]  F. Netter Atlas of Human Anatomy , 1967 .

[113]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  S. Pizer,et al.  Multi-scale Shape Modeling by Markov Random Fields , 2003 .

[115]  Andrew Thall,et al.  Fast C 2 Interpolating Subdivision Surfaces using Iterative Inversion of Stationary Subdivision Rules , 2003 .

[116]  P. Thomas Fletcher,et al.  Statistics of Shape via Principal Component Analysis on Lie Groups , 2003 .

[117]  Stephen M. Pizer,et al.  Form metrics for interactive rendering via figural models of perception , 2002 .

[118]  Guido Gerig,et al.  Combined Boundary-Medial Shape Description of Variable Biological Objects , 2001 .

[119]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[120]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[121]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[122]  Dinesh Manocha,et al.  Computing the medial axis of a polyhedron reliably and efficiently , 2000 .

[123]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[124]  Guido Gerig,et al.  Elastic model-based segmentation of 3-D neuroradiological data sets , 1999, IEEE Transactions on Medical Imaging.

[125]  T. Crow,et al.  The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. , 1999, Brain : a journal of neurology.

[126]  James N. Damon,et al.  Generic transitions of relative critical sets in parametrized families with applications to image analysis , 1999 .

[127]  Stephen M. Pizer,et al.  Zoom-Invariant Vision of Figural Shape: Effects on Cores of Image Disturbances , 1998, Comput. Vis. Image Underst..

[128]  Ralph Costa Teixeira,et al.  Curvature motions, medial axes and distance transforms , 1998 .

[129]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[130]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[131]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[132]  Michael I. Miller,et al.  Individualizing Neuroanatomic Atlases Using a Massively Parallel Computer , 1996, Computer.

[133]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[134]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[135]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[136]  David W. Aha,et al.  A Comparative Evaluation of Sequential Feature Selection Algorithms , 1995, AISTATS.

[137]  Marie-Paule Cani,et al.  An implicit formulation for precise contact modeling between flexible solids , 1993, SIGGRAPH.

[138]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[139]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[140]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[141]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .