Spontaneous emission in non-local materials

Light–matter interactions can be strongly modified by the surrounding environment. Here, we report on the first experimental observation of molecular spontaneous emission inside a highly non-local metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the non-local response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a non-local medium. An engineered material non-locality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photochemistry, imaging and sensing with macroscopic composites.

[1]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[2]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[3]  Stuart A. Rice,et al.  Organic Semiconductors and Spatial Dispersion in Crystal Optics and the Theory of Excitons , 1967 .

[4]  F. García-Vidal,et al.  Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. , 2010, Nano letters.

[5]  G. W. Ford,et al.  Electromagnetic effects on a molecule at a metal surface , 1981 .

[6]  Light emission in nonlocal plasmonic metamaterials. , 2015, Faraday discussions.

[7]  Mikhail A. Noginov,et al.  Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial , 2011 .

[8]  L. Lugiato,et al.  Cooperative radiation processes in two-level systems: Superfluorescence. II , 1975 .

[9]  Alexey V. Krasavin,et al.  Looking into meta-atoms of plasmonic nanowire metamaterial. , 2014, Nano letters.

[10]  G. Wurtz,et al.  Purcell effect in hyperbolic metamaterial resonators , 2015, 1504.06950.

[11]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[12]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[13]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[14]  G. Wurtz,et al.  Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. , 2015, Optics express.

[15]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[16]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[17]  S.R.J. Brueck,et al.  Radiation from a dipole embedded in a dielectric slab , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  R. G. Nelson,et al.  Optical properties of thin film Au-MgF2 cermets , 1974 .

[19]  Viktor A. Podolskiy,et al.  Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media , 2006 .

[20]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[21]  S. Provencher,et al.  Inverse problems in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy , 1979 .

[22]  J. Götte Principles of Nano-Optics, 2nd edn., by Lukas Novotny and Bert Hecht , 2013 .

[23]  Radu Malureanu,et al.  Experimental Demonstration of Effective Medium Approximation Breakdown in Deeply Subwavelength All-Dielectric Multilayers. , 2015, Physical review letters.

[24]  P. Ginzburg Cavity quantum electrodynamics in application to plasmonics and metamaterials , 2016 .

[25]  Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. , 2015, Faraday discussions.

[26]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[27]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[28]  Zi Jing Wong,et al.  Magnetic hyperbolic optical metamaterials , 2015, Nature Communications.

[29]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[30]  V. Podolskiy,et al.  Nonlocal optics of plasmonic nanowire metamaterials , 2013, CLEO: 2013.

[31]  L. Broglie,et al.  XXXV. A Tentative Theory of Light Quanta , 1924 .

[32]  Benjamin J. M. Brenny,et al.  Nanoscale optical tomography with cathodoluminescence spectroscopy. , 2015, Nature nanotechnology.

[33]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[34]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[35]  G. Wurtz,et al.  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[36]  Zubin Jacob,et al.  Broadband Purcell effect: Radiative decay engineering with metamaterials , 2009, 0910.3981.

[37]  Yuri S. Kivshar,et al.  Microscopic model of Purcell enhancement in hyperbolic metamaterials , 2012, 1205.3955.

[38]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .