Interactive light-driven and parallel manipulation of inhomogeneous particles.

A light-driven micromanipulation system with real-time userfeedback control is used to simultaneously trap colloidal suspensions enabling a unique interactive sorting capability and arbitrary patterning of microscopic particles. The technique is based on a straightforward phase-tointensity conversion generating multiple beam patterns for manipulation of particles in the observation plane of a microscope. Encoding of phase patterns in a spatial light modulator, which is directly controlled by a computer, allows for dynamic reconfiguration of the trapping patterns, where independent control of the position, size, shape and intensity of each beam is possible. Efficient sorting of microsphere mixtures of distinct sizes and colors using multiple optical traps is demonstrated.

[1]  Halina Rubinsztein-Dunlop,et al.  Optically driven micromachine elements , 2001 .

[2]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[3]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[4]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[5]  G. Gradl,et al.  A 3-D microelectrode system for handling and caging single cells and particles , 1999 .

[6]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[7]  D. A. Saville,et al.  Electrophoretic assembly of colloidal crystals with optically tunable micropatterns , 2000, Nature.

[8]  P C Mogensen,et al.  Optimal phase contrast in common-path interferometry. , 2001, Applied optics.

[9]  Alex Terray,et al.  Microfluidic Control Using Colloidal Devices , 2002, Science.

[10]  J. Joannopoulos Photonics: Self-assembly lights up , 2001, Nature.

[11]  M J Padgett,et al.  Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. , 2000, Optics letters.

[12]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[13]  H. Misawa,et al.  Pattern formation and flow control of fine particles by laser-scanning micromanipulation. , 1991, Optics letters.

[14]  David W. M. Marr,et al.  Fabrication of linear colloidal structures for microfluidic applications , 2002 .

[15]  C P Grover,et al.  Automated single-cell sorting system based on optical trapping. , 2001, Journal of biomedical optics.

[16]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[17]  Jesper Glückstad,et al.  Multiple-beam optical tweezers generated by the generalized phase-contrast method. , 2002, Optics letters.

[18]  W. Sibbett,et al.  Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam , 2002, Nature.

[19]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[20]  Jonathan Knight,et al.  Microfluidics: Honey, I shrunk the lab , 2002, Nature.

[21]  M. Holl,et al.  Microscale Bioanalytical Systems , 2002, Science.

[22]  Jesper Gluckstad,et al.  Fully dynamic multiple-beam optical tweezers. , 2002, Optics express.

[23]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[24]  K. Dholakia,et al.  Optical micromanipulation using a Bessel light beam , 2001 .

[25]  Yusuke Ogura,et al.  Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources. , 2002, Applied optics.