Hall normalization constants for the Bures volumes of the n-state quantum systems

We report the results of certain integrations of quantum-theoretic interest, relying, in this regard, upon recently developed parametrizations of Boya et al (1998 Preprint quant-ph/9810084) of the n × n density matrices, in terms of squared components of the unit (n - 1)-sphere and the n × n unitary matrices. Firstly, we express the normalized volume elements of the Bures (minimal monotone) metric for n = 2 and 3, thereby obtaining `Bures prior probability distributions' over the two- and three-state systems. Then, as a first step in extending these results to n>3, we determine that the `Hall normalization constant' (Cn) for the marginal Bures prior probablity distribution over the (n - 1)-dimensional simplex of the n eigenvalues of the n × n density matrices is, for n = 4, equal to 71 680/2. Since we also find that C3 = 35/, it follows that C4 is simply equal to 211C3/. (C2 itself is known to equal 2/.) The constant C5 is also found. It too is associated with a remarkably simple decomposition, involving the product of the eight consecutive prime numbers from 3 to 23. We also preliminarily investigate several cases n>5, with the use of quasi-Monte Carlo integration. We hope that the various analyses reported will prove useful in deriving a general formula (which evidence suggests will involve the Bernoulli numbers) for the Hall normalization constant for arbitrary n. This would have diverse applications, including quantum inference and universal quantum coding.

[1]  P. Slater LETTER TO THE EDITOR: Essentially all Gaussian two-party quantum states are a priori nonclassical but classically correlated , 1999, quant-ph/9909062.

[2]  L. Kwek,et al.  Quantum Jeffreys prior for displaced squeezed thermal states , 1999 .

[3]  M. Rieffel Metrics on state spaces , 1999, Documenta Mathematica.

[4]  M. Hall Universal geometric approach to uncertainty, entropy, and information , 1999, physics/9903045.

[5]  M. Lewenstein,et al.  On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[6]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[7]  E. Sudarshan,et al.  Density Matrices and Geometric Phases for n-state Systems , 1998, quant-ph/9810084.

[8]  P. Slater A priori probabilities of separable quantum states , 1998, quant-ph/9810026.

[9]  Feng Qi,et al.  Generalized weighted mean values with two parameters† , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  J. Selfridge,et al.  FACTORING FACTORIAL N , 1998 .

[11]  Andrew S. Lesniewski,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[12]  J. Dittmann Explicit formulae for the Bures metric , 1998, quant-ph/9808044.

[13]  M. Byrd Differential geometry on SU(3) with applications to three state systems , 1998, math-ph/9807032.

[14]  M. Horodecki,et al.  Universal Quantum Information Compression , 1998, quant-ph/9805017.

[15]  H. Srivastava,et al.  Some Families of Series Representations for the Riemann ζ(3) , 1998 .

[16]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[17]  E. Sudarshan,et al.  SU(3) revisited , 1998, physics/9803029.

[18]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[19]  M. Hall RANDOM QUANTUM CORRELATIONS AND DENSITY OPERATOR DISTRIBUTIONS , 1998, quant-ph/9802052.

[20]  P. Slater Volume Elements of Monotone Metrics on the n x n Density Matrices as Densities-of-States for Thermodynamic Purposes. II , 1997, quant-ph/9802019.

[21]  Virginia Kiryakova,et al.  All the special functions are fractional differintegrals of elementary functions , 1997 .

[22]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[23]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[24]  P. Slater Information gains expected from separate and joint measurements of N identical spin-1/2 systems: Noninformative Bayesian analyses , 1997 .

[25]  P. Slater COMPARATIVE NONINFORMATIVITIES OF QUANTUM PRIORS BASED ON MONOTONE METRICS , 1997, quant-ph/9703012.

[26]  J. Weitsman,et al.  Toric structures on the moduli space of flat connections on a Riemann surface II: Inductive decomposition of the moduli space , 1997 .

[27]  C. Krattenthaler,et al.  Asymptotic redundancies for universal quantum coding , 1996, IEEE Trans. Inf. Theory.

[28]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[29]  P. Bateman,et al.  A Hundred Years of Prime Numbers , 1996 .

[30]  S. Leo,et al.  Octonionic Quantum Mechanics and Complex Geometry , 1996, hep-th/9609032.

[31]  D. Petz Monotone metrics on matrix spaces , 1996 .

[32]  P. Slater Applications of quantum and classical Fisher information to two-level complex and quaternionic and three-level complex systems , 1996 .

[33]  Paul B. Slater,et al.  LETTER TO THE EDITOR: Quantum Fisher - Bures information of two-level systems and a three-level extension , 1996 .

[34]  Bertrand Clarke,et al.  Implications of Reference Priors for Prior Information and for Sample Size , 1996 .

[35]  P. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[36]  C. Caldwell On the primality of $n!\pm 1$ and $2·3·5\cdots p\pm 1$ , 1995 .

[37]  A. Barron,et al.  Jeffreys' prior is asymptotically least favorable under entropy risk , 1994 .

[38]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[39]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[40]  Matthias Hübner,et al.  Computation of Uhlmann's parallel transport for density matrices and the Bures metric on three-dimensional Hilbert space , 1993 .

[41]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[42]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[43]  E. Witten On quantum gauge theories in two dimensions , 1991 .

[44]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[45]  R. Kass The Geometry of Asymptotic Inference , 1989 .

[46]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[47]  T. Andô,et al.  Means of positive linear operators , 1980 .

[48]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[49]  P. Staszewski On the characterization of the von Neumann entropy via the entropies of measurements , 1978 .

[50]  V. Zolotarev METRIC DISTANCES IN SPACES OF RANDOM VARIABLES AND THEIR DISTRIBUTIONS , 1976 .

[51]  B. Fusaro The Area of a Hypersphere in Riemannian Space , 1973 .

[52]  Jacek Klinowski,et al.  New rapidly convergent series representations for (2+1) , 1997 .

[53]  日本数学会,et al.  Encyclopedic dictionary of mathematics , 1993 .

[54]  Michel Waldschmidt,et al.  Number Theory and Physics , 1990 .

[55]  L. Biedenharn Angular momentum in quantum physics , 1981 .

[56]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[57]  D. Petz,et al.  Supported by Federal Ministry of Science and Research, Austria Available via anonymous ftp or gopher from FTP.ESI.AC.ATGeometries of Quantum States , 2022 .

[58]  Wilhelm Sievers Venezuela (Estados Unidos de Venezuela) , 2022 .