A review of message passing algorithms in estimation of distribution algorithms

Message passing algorithms (MPAs) have been traditionally used as an inference method in probabilistic graphical models. Some MPA variants have recently been introduced in the field of estimation of distribution algorithms (EDAs) as a way to improve the efficiency of these algorithms. Multiple developments on MPAs point to an increasing potential of these methods for their application as part of hybrid EDAs. In this paper we review recent work on EDAs that apply MPAs and propose ways to further extend the useful synergies between MPAs and EDAs. Furthermore, we analyze some of the implications that MPA developments can have in their future application to EDAs and other evolutionary algorithms.

[1]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[2]  Yair Weiss,et al.  Approximate Inference and Protein-Folding , 2002, NIPS.

[3]  Federico Ricci-Tersenghi,et al.  Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model , 2011, ArXiv.

[4]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[5]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence) , 2006 .

[6]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[7]  Concha Bielza,et al.  Multi-objective Optimization with Joint Probabilistic Modeling of Objectives and Variables , 2011, EMO.

[8]  Heinz Mühlenbein,et al.  The Factorized Distribution Algorithm and the Minimum Relative Entropy Principle , 2006, Scalable Optimization via Probabilistic Modeling.

[9]  Danny Dolev,et al.  Fixing convergence of Gaussian belief propagation , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  Martin J. Wainwright,et al.  Exact MAP Estimates by (Hyper)tree Agreement , 2002, NIPS.

[11]  Masaharu Munetomo,et al.  Introducing assignment functions to Bayesian optimization algorithms , 2008, Inf. Sci..

[12]  José Antonio Lozano Alonso,et al.  New methods for generating populations in Markov network based EDAs: Decimation strategies and model-based template recombination , 2012 .

[13]  Yair Weiss,et al.  Correctness of Local Probability Propagation in Graphical Models with Loops , 2000, Neural Computation.

[14]  J. A. Lozano,et al.  An empirical analysis of loopy belief propagation in three topologies : grids , small-world networks and random graphs , 2008 .

[15]  Roberto Santana,et al.  Analyzing the probability of the optimum in EDAs based on Bayesian networks , 2009, 2009 IEEE Congress on Evolutionary Computation.

[16]  Alexander Mendiburu,et al.  The Plackett-Luce ranking model on permutation-based optimization problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[17]  Jiri Ocenasek,et al.  Estimation of Distribution Algorithm for Mixed Continuous-Discrete Optimization , 2002 .

[18]  Pieter Abbeel,et al.  Learning Factor Graphs in Polynomial Time and Sample Complexity , 2006, J. Mach. Learn. Res..

[19]  Roberto Santana,et al.  Toward Understanding EDAs Based on Bayesian Networks Through a Quantitative Analysis , 2012, IEEE Transactions on Evolutionary Computation.

[20]  Avi Pfeffer,et al.  Loopy Belief Propagation as a Basis for Communication in Sensor Networks , 2002, UAI.

[21]  Qingfu Zhang,et al.  Structure learning and optimisation in a Markov-network based estimation of distribution algorithm , 2009, 2009 IEEE Congress on Evolutionary Computation.

[22]  John W. Fisher,et al.  Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..

[23]  Robert I. McKay,et al.  Sampling Bias in Estimation of Distribution Algorithms for Genetic Programming Using Prototype Trees , 2010, PRICAI.

[24]  Pedro Larrañaga,et al.  The Impact of Exact Probabilistic Learning Algorithms in EDAs Based on Bayesian Networks , 2008, Linkage in Evolutionary Computation.

[25]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[28]  Thomas P. Minka,et al.  Divergence measures and message passing , 2005 .

[29]  Hilbert J. Kappen,et al.  Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks , 2004, NIPS.

[30]  Heinz Mühlenbein,et al.  A Maximum Entropy Approach to Sampling in EDA ? The Single Connected Case , 2003, CIARP.

[31]  Qingfu Zhang,et al.  Approaches to selection and their effect on fitness modelling in an Estimation of Distribution Algorithm , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[32]  Bart Selman,et al.  Message-passing and local heuristics as decimation strategies for satisfiability , 2009, SAC '09.

[33]  Roberto Santana Hermida Advances in probabilistic graphical models for optimisation and learning. Applications in protein modeling , 2006 .

[34]  Alexander E. I. Brownlee,et al.  Multivariate Markov networks for fitness modelling in an estimation of distribution algorithm , 2009 .

[35]  Roberto Santana,et al.  Estimation of Bayesian networks algorithms in a class of complex networks , 2010, IEEE Congress on Evolutionary Computation.

[36]  Tsuhan Chen,et al.  Beyond trees: MRF inference via outer-planar decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Pedro Larrañaga,et al.  Mathematical modelling of UMDAc algorithm with tournament selection. Behaviour on linear and quadratic functions , 2002, Int. J. Approx. Reason..

[38]  Brendan J. Frey,et al.  A Binary Variable Model for Affinity Propagation , 2009, Neural Computation.

[39]  Shumeet Baluja,et al.  Using Optimal Dependency-Trees for Combinational Optimization , 1997, ICML.

[40]  Hussein A. Abbass,et al.  Sub-structural niching in estimation of distribution algorithms , 2005, GECCO '05.

[41]  Pedro Larrañaga,et al.  Learning Factorizations in Estimation of Distribution Algorithms Using Affinity Propagation , 2010, Evolutionary Computation.

[42]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[43]  Siddhartha Shakya,et al.  A Markovianity based optimisation algorithm , 2012, Genetic Programming and Evolvable Machines.

[44]  Alexander Mendiburu,et al.  A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems , 2012, Progress in Artificial Intelligence.

[45]  Arturo Hernández-Aguirre,et al.  Approximating the search distribution to the selection distribution in EDAs , 2009, GECCO 2009.

[46]  Tom Heskes,et al.  On the Uniqueness of Loopy Belief Propagation Fixed Points , 2004, Neural Computation.

[47]  Qingfu Zhang,et al.  On the limits of effectiveness in estimation of distribution algorithms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[48]  Peter A. N. Bosman,et al.  Learning Structure Illuminates Black Boxes - An Introduction to Estimation of Distribution Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[49]  R. Jirousek,et al.  On the effective implementation of the iterative proportional fitting procedure , 1995 .

[50]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[51]  Andrew Johnson,et al.  The Importance of Selection Mechanisms in Distribution Estimation Algorithms , 2001, Artificial Evolution.

[52]  Roberto Santana,et al.  Message Passing Methods for Estimation of Distribution Algorithms Based on Markov Networks , 2013, SEMCCO.

[53]  Josef Schwarz,et al.  Estimation Distribution Algorithm for mixed continuous-discrete optimization problems , 2002 .

[54]  Olivier Regnier-Coudert,et al.  Bayesian network structure learning using characteristic properties of permutation representations with applications to prostate cancer treatment , 2013 .

[55]  Brendan J. Frey,et al.  Hierarchical Affinity Propagation , 2011, UAI.

[56]  Yong Gao,et al.  Space Complexity of Estimation of Distribution Algorithms , 2005, Evolutionary Computation.

[57]  A. Hartmann Phase Transitions in Combinatorial Optimization Problems - Basics, Algorithms and Statistical Mechanics , 2005 .

[58]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[59]  Thomas Hofmann,et al.  Using Combinatorial Optimization within Max-Product Belief Propagation , 2007 .

[60]  Pedro Larrañaga,et al.  Optimization by Max-Propagation Using Kikuchi Approximations , 2007 .

[61]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[62]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[63]  Robin Höns,et al.  Using Maximum Entropy and Generalized Belief Propagation in Estimation of Distribution Algorithms , 2012 .

[64]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[65]  Roberto Santana,et al.  Evolving NK-complexity for evolutionary solvers , 2012, GECCO '12.

[66]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[67]  Riccardo Zecchina,et al.  Constraint Satisfaction by Survey Propagation , 2002, Computational Complexity and Statistical Physics.

[68]  Concha Bielza,et al.  Continuous Estimation of Distribution Algorithms Based on Factorized Gaussian Markov Networks , 2012 .

[69]  Alexander Mendiburu,et al.  Parallel implementation of EDAs based on probabilistic graphical models , 2005, IEEE Transactions on Evolutionary Computation.

[70]  Danny Bickson,et al.  Gaussian Belief Propagation: Theory and Aplication , 2008, 0811.2518.

[71]  Carlos Echegoyen Arruti Contributions to the analysis and understanding of estimation of distribution algorithms , 2012 .

[72]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[73]  Pedro Larrañaga,et al.  Exact Bayesian network learning in estimation of distribution algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[74]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[75]  D. Nilsson,et al.  An efficient algorithm for finding the M most probable configurationsin probabilistic expert systems , 1998, Stat. Comput..

[76]  Pedro Larrañaga,et al.  Interactions and dependencies in estimation of distribution algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[77]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[78]  David E. Goldberg,et al.  Influence of selection and replacement strategies on linkage learning in BOA , 2007, 2007 IEEE Congress on Evolutionary Computation.

[79]  Martin Pelikan,et al.  Influence of selection on structure learning in markov network EDAs: an empirical study , 2012, GECCO '12.

[80]  Tom Heskes,et al.  Fractional Belief Propagation , 2002, NIPS.

[81]  Robin Hons,et al.  Estimation of Distribution Algorithms and Minimum Relative Entropy , 2005 .

[82]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[83]  David E. Goldberg,et al.  Spin-Flip Symmetry and Synchronization , 2002, Evolutionary Computation.

[84]  Worasait Suwannik,et al.  Solving one-billion-bit Noisy OneMax problem using Estimation Distribution Algorithm with Arithmetic Coding , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[85]  Yair Be'ery,et al.  Convergence analysis of turbo decoding of product codes , 2001, IEEE Trans. Inf. Theory.

[86]  Danushka Bollegala,et al.  Probabilistic model building GP with Belief propagation , 2012, 2012 IEEE Congress on Evolutionary Computation.

[87]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[88]  David E. Goldberg,et al.  From Twomax To The Ising Model: Easy And Hard Symmetrical Problems , 2002, GECCO.

[89]  Eunice Esther Ponce-de-Leon-Senti,et al.  Adaptive Evolutionary Algorithm Based on a Cliqued Gibbs Sampling over Graphical Markov Model Structure , 2012 .

[90]  Martin Pelikan,et al.  A factor graph based genetic algorithm , 2014, Int. J. Appl. Math. Comput. Sci..

[91]  Jinglu Hu,et al.  An adaptive niching EDA based on clustering analysis , 2010, IEEE Congress on Evolutionary Computation.

[92]  Jose A. Lozano,et al.  Fast Fitness Improvements in Estimation of Distribution Algorithms Using Belief Propagation , 2012 .

[93]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[94]  J. A. Lozano,et al.  Analyzing the k Most Probable Solutions in EDAs Based on Bayesian Networks , 2010 .

[95]  Nando de Freitas,et al.  Bayesian Optimization in High Dimensions via Random Embeddings , 2013, IJCAI.

[96]  Endika Bengoetxea,et al.  A parallel framework for loopy belief propagation , 2007, GECCO '07.

[97]  Michele Leone,et al.  Clustering by Soft-constraint Affinity Propagation: Applications to Gene-expression Data , 2022 .

[98]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[99]  Alan L. Yuille,et al.  CCCP Algorithms to Minimize the Bethe and Kikuchi Free Energies: Convergent Alternatives to Belief Propagation , 2002, Neural Computation.

[100]  David E. Goldberg,et al.  Loopy Substructural Local Search for the Bayesian Optimization Algorithm , 2009, SLS.

[101]  H. Mühlenbein Convergence Theorems of Estimation of Distribution Algorithms , 2012 .

[102]  Joris M. Mooij,et al.  libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..

[103]  Cristopher Moore,et al.  Computational Complexity and Statistical Physics , 2006, Santa Fe Institute Studies in the Sciences of Complexity.

[104]  Heinz Mühlenbein,et al.  Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning , 2002, Int. J. Approx. Reason..

[105]  Dmitry M. Malioutov,et al.  Walk-Sums and Belief Propagation in Gaussian Graphical Models , 2006, J. Mach. Learn. Res..

[106]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[107]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[108]  Yair Weiss,et al.  Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[109]  David E. Goldberg,et al.  Evaluation relaxation using substructural information and linear estimation , 2006, GECCO '06.

[110]  Arturo Hernández Aguirre,et al.  Approximating the search distribution to the selection distribution in EDAs , 2009, GECCO.

[111]  Max Welling,et al.  On the Choice of Regions for Generalized Belief Propagation , 2004, UAI.

[112]  C. Furtlehner,et al.  Multi-Objective 3-SAT with Survey-Propagation , 2010, NIPS 2010.

[113]  Xavier Llorà,et al.  Towards billion-bit optimization via a parallel estimation of distribution algorithm , 2007, GECCO '07.

[114]  Masato Okada,et al.  Accuracy of the Bethe approximation for hyperparameter estimation in probabilistic image processing , 2004 .

[115]  Pedro Larrañaga,et al.  Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks , 2005, Evolutionary Computation.

[116]  Michael I. Jordan,et al.  Graph Partition Strategies for Generalized Mean Field Inference , 2004, UAI.

[117]  A. Yuille A Double-Loop Algorithm to Minimize the Bethe and Kikuchi Free Energies , 2001 .

[118]  Xin Yao,et al.  NichingEDA: Utilizing the diversity inside a population of EDAs for continuous optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[119]  M. Mézard,et al.  Survey propagation: An algorithm for satisfiability , 2005 .

[120]  Jinglu Hu,et al.  A novel clustering based niching EDA for protein folding , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[121]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[122]  Martin J. Wainwright,et al.  Tree consistency and bounds on the performance of the max-product algorithm and its generalizations , 2004, Stat. Comput..

[123]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[124]  Siddhartha Shakya,et al.  Markov Networks in Evolutionary Computation , 2012 .