Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics

Topology optimization of structures and composite continua has two main subfields: Layout Optimization (LO) deals with grid-like structures having very low volume fractions and Generalized Shape Optimization (GSO) is concerned with higher volume fractions, optimizing simultaneously the topology and shape of internal boundaries of porous or composite continua. The solutions for both problem classes can be exact/analytical or discretized/FE-based.This review article discusses FE-based generalized shape optimization, which can be classified with respect to the types of topologies involved, namely Isotropic-Solid/Empty (ISE), Anisotropic-Solid/Empty (ASE), and Isotropic-Solid/Empty/Porous (ISEP) topologies.Considering in detail the most important class of (i.e. ISE) topologies, the computational efficiency of various solution strategies, such as SIMP (Solid Isotropic Microstructure with Penalization), OMP (Optimal Microstructure with Penalization) and NOM (NonOptimal Microstructures) are compared.The SIMP method was proposed under the terms “direct approach" or “artificial density approach" by Bendsoe over a decade ago; it was derived independently, used extensively and promoted by the author’s research group since 1990. The term “SIMP" was introducted by the author in 1992. After being out of favour with most other research schools until recently, SIMP is becoming generally accepted in topology optimization as a technique of considerable advantages. It seems, therefore, useful to review in greater detail the origins, theoretical background, history, range of validity and major advantages of this method.

[1]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[2]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[3]  RECTANGULAR GRILLAGES OF LEAST WEIGHT. , 1972 .

[4]  George I. N. Rozvany,et al.  Grillages of maximum strength and maximum stiffness , 1972 .

[5]  George I. N. Rozvany,et al.  Optimal load transmission by flexure , 1972 .

[6]  J. E. Taylor,et al.  A Finite Element Method for the Optimal Design of Variable Thickness Sheets , 1973 .

[7]  W. Prager,et al.  Optimal design of partially discretized grillages , 1976 .

[8]  G.I.N. Rozvany,et al.  OPTIMIZATION OF STRUCTURAL GEOMETRY , 1977 .

[9]  George I. N. Rozvany,et al.  Optimal Layout of Grillages , 1977 .

[10]  W. Prager,et al.  A new class of structural optimization problems: Optimal archgrids , 1979 .

[11]  N. Olhoff,et al.  An investigation concerning optimal design of solid elastic plates , 1981 .

[12]  George I. N. Rozvany,et al.  On the Solid Plate Paradox in Structural Optimization , 1982 .

[13]  Robert V. Kohn,et al.  Optimal design for torsional rigidity , 1982 .

[14]  Andrej Cherkaev,et al.  Regularization of optimal design problems for bars and plates, part 2 , 1982 .

[15]  Robert V. Kohn,et al.  Hencky-Prandtl nets and constrained Michell trusses , 1983 .

[16]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[17]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[18]  George I. N. Rozvany,et al.  Least-weight design of perforated elastic plates. II , 1987 .

[19]  G. I. N. Rozvany,et al.  Minimum-Weight Plate Design Via Prager’s Layout Theory (Prager Memorial Lecture) , 1987 .

[20]  Marco Avellaneda,et al.  Optimal bounds and microgeometries for elastic two-phase composites , 1987 .

[21]  G. I. N. Rozvany,et al.  Least-weight design of perforated elastic plates for given compliance: Nonzero Poisson's ratio , 1988 .

[22]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[23]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[24]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria , 1989 .

[25]  Zafer Gürdal,et al.  A penalty approach for nonlinear optimization with discrete design variables , 1990 .

[26]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[27]  G. I. N. Rozvany,et al.  Optimal layout theory: Analytical solutions for elastic structures with several deflection constraints and load conditions , 1992 .

[28]  M. Zhou,et al.  A new discretized optimality criteria method in structural optimization , 1992 .

[29]  M. Zhou,et al.  Generalized shape optimization without homogenization , 1992 .

[30]  M. Zhou,et al.  Extensions of new discretized optimality criteria methods to structures with passive control , 1992 .

[31]  George I. N. Rozvany,et al.  DCOC: An optimality criteria method for large systems Part I: theory , 1992 .

[32]  Rakesh K. Kapania,et al.  Truss Topology Optimization with Simultaneous Analysis and Design , 1992 .

[33]  R. Kohn,et al.  Topology optimization and optimal shape design using homogenization , 1993 .

[34]  Martin P. Bendsøe,et al.  Topology design of structures , 1993 .

[35]  Robert V. Kohn,et al.  Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions , 1993 .

[36]  Ole Sigmund,et al.  Topology Optimization Using Iterative Continuum-Type Optimality Criteria (COC) Methods for Discretized Systems , 1993 .

[37]  M. P. Bendsøe,et al.  The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: An asymptotic study , 1993 .

[38]  Noboru Kikuchi,et al.  Topology and Generalized Layout Optimization of Elastic Structures , 1993 .

[39]  H. P. Mlejnek,et al.  Some Explorations in the Genesis of Structures , 1993 .

[40]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[41]  George I. N. Rozvany,et al.  On singular topologies in exact layout optimization , 1994 .

[42]  C. S. Jog,et al.  Topology design with optimized, self‐adaptive materials , 1994 .

[43]  G. Rozvany,et al.  Extended exact solutions for least-weight truss layouts—Part I: Cantilever with a horizontal axis of symmetry , 1994 .

[44]  G. Rozvany,et al.  Generalized Michell structures — exact least-weight truss layouts for combined stress and displacement constraints: Part I — General theory for plane trusses , 1995 .

[45]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[46]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[47]  M. Zhou,et al.  An efficient DCOC algorithm based on high-quality approximations for problems including eigenvalue constraints , 1995 .

[48]  Raphael T. Haftka,et al.  A comparison of optimality criteria methods for stress and displacement constraints , 1994 .

[49]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[50]  J. E. Taylor,et al.  On the prediction of material properties and topology for optimal continuum structures , 1997 .

[51]  Martin P. Bendsøe,et al.  Topology Optimization of Continuum Structures with Stress Constraints , 1997 .

[52]  Claude Fleury,et al.  Topology optimization involving discrete variables , 1997 .

[53]  G. Allaire,et al.  THE HOMOGENIZATION METHOD FOR TOPOLOGY AND SHAPE OPTIMIZATION , 1997 .

[54]  N. Olhoff,et al.  Topology optimization of three-dimensional structures using optimum microstructures , 1998 .

[55]  J. E. Taylor,et al.  An energy model for the optimal design of linear continuum structures , 1998 .

[56]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[57]  G. Rozvany Exact analytical solutions for some popular benchmark problems in topology optimization , 1998 .

[58]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[59]  Ole Sigmund,et al.  On the Optimality of Bone Microstructure , 1999 .

[60]  Ole Sigmund,et al.  Topology synthesis of large‐displacement compliant mechanisms , 2001 .

[61]  J. E. Taylor,et al.  A design model to predict optimal two-material composite structures , 1999 .

[62]  Pierre Duysinx,et al.  Topology Optimization with Different Stress Limit in Tension and Compression , 1999 .

[63]  M. Beckers,et al.  Topology optimization using a dual method with discrete variables , 1999 .

[64]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[65]  Ole Sigmund,et al.  Topology optimization: a tool for the tailoring of structures and materials , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  O. Sigmund A new class of extremal composites , 2000 .

[67]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[68]  N. Olhoff,et al.  Topology optimization of continuum structures subjected to pressure loading , 2000 .

[69]  George I.N. Rozvany,et al.  Problem Classes, Solution Strategies and Unified Terminology of FE-Based Topology Optimization , 2000 .

[70]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[71]  G. Rozvany Stress ratio and compliance based methods in topology optimization – a critical review , 2001 .

[72]  K. Svanberg,et al.  On the trajectories of penalization methods for topology optimization , 2001 .

[73]  Ole Sigmund,et al.  A web-based topology optimization program , 2001 .

[74]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[75]  H. Rodrigues,et al.  Hierarchical optimization of material and structure , 2002 .

[76]  M. Zhou,et al.  Issues of commercial optimization software development , 2002 .