Interendothelial Claudin-5 Expression Depends on Cerebral Endothelial Cell–Matrix Adhesion by β1-Integrins

[1]  W. Pan,et al.  Role of astrocytic leptin receptor subtypes on leptin permeation across hCMEC/D3 human brain endothelial cells , 2010, Journal of neurochemistry.

[2]  Shameena Bake,et al.  Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins. , 2009, Microvascular research.

[3]  N. Olson,et al.  Transcriptional profiling of human cavernosal endothelial cells reveals distinctive cell adhesion phenotype and role for claudin 11 in vascular barrier function. , 2009, Physiological genomics.

[4]  G. D. del Zoppo,et al.  Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia , 2009, Journal of neuroscience research.

[5]  G. D. del Zoppo,et al.  The Rapid Decrease in Astrocyte-Associated Dystroglycan Expression by Focal Cerebral Ischemia is Protease-Dependent , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  G. D. del Zoppo,et al.  Responses of Endothelial Cell and Astrocyte Matrix-Integrin Receptors to Ischemia Mimic Those Observed in the Neurovascular Unit , 2008, Stroke.

[7]  Y. Imai,et al.  Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions , 2007, Journal of neuroscience research.

[8]  T. Terasaki,et al.  Exogenous expression of claudin‐5 induces barrier properties in cultured rat brain capillary endothelial cells , 2007, Journal of cellular physiology.

[9]  G. D. del Zoppo,et al.  Integrin-matrix interactions in the cerebral microvasculature. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[10]  T. Davis,et al.  Activation of PKC modulates blood-brain barrier endothelial cell permeability changes induced by hypoxia and posthypoxic reoxygenation. , 2005, American journal of physiology. Heart and circulatory physiology.

[11]  P Couvreur,et al.  Puromycin‐based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier‐specific properties , 2005, Journal of neurochemistry.

[12]  Masami Niwa,et al.  Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology , 2005, Cellular and Molecular Neurobiology.

[13]  Anirban Datta,et al.  Beta1-integrin orients epithelial polarity via Rac1 and laminin. , 2004, Molecular biology of the cell.

[14]  J. Koziol,et al.  Focal Cerebral Ischemia Induces Active Proteases That Degrade Microvascular Matrix , 2004, Stroke.

[15]  S. Tsukita,et al.  Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice , 2003, The Journal of cell biology.

[16]  T. Davis,et al.  Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. , 2002, American journal of physiology. Heart and circulatory physiology.

[17]  Arne Fischmann,et al.  Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin , 2002, Acta Neuropathologica.

[18]  R. Egleton,et al.  Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier , 2001, Trends in Neurosciences.

[19]  G. D. del Zoppo,et al.  Rapid Loss of Microvascular Integrin Expression during Focal Brain Ischemia Reflects Neuron Injury , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  S. Liebner,et al.  Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme , 2000, Acta Neuropathologica.

[21]  C. Catania,et al.  Neurons and ECM regulate occludin localization in brain endothelial cells , 2000, Neuroreport.

[22]  S. Tsukita,et al.  Endothelial Claudin , 1999, The Journal of cell biology.

[23]  J. Koziol,et al.  Activated Microvessels Express Vascular Endothelial Growth Factor and Integrin αvβ3 During Focal Cerebral Ischemia , 1999 .

[24]  T. Abbruscato,et al.  Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity. , 1999, The Journal of pharmacology and experimental therapeutics.

[25]  S. Nigam,et al.  Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. , 1999, American journal of physiology. Renal physiology.

[26]  T. Tilling,et al.  Basement Membrane Proteins Influence Brain Capillary Endothelial Barrier Function In Vitro , 1998, Journal of neurochemistry.

[27]  R. Hynes,et al.  Targeted Mutations in Integrins and their Ligands: Their Implications for Vascular Biology , 1997, Thrombosis and Haemostasis.

[28]  J. Garcìa,et al.  DNA scission after focal brain ischemia. Temporal differences in two species. , 1997, Stroke.

[29]  R. Ransohoff,et al.  Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. , 1996, Journal of immunology.

[30]  J. Koziol,et al.  Distribution of Integrin-like Immunoreactivity on Primate Brain Microvasculature , 1996, Journal of neuropathology and experimental neurology.

[31]  M. Dehouck,et al.  Hypoxia Increases the Susceptibility to Oxidant Stress and the Permeability of the Blood‐Brain Barrier Endothelial Cell Monolayer , 1995, Journal of neurochemistry.

[32]  L. Rubin,et al.  Evidence that tyrosine phosphorylation may increase tight junction permeability. , 1995, Journal of cell science.

[33]  C. ffrench-Constant,et al.  A developmental analysis of oligodendroglial integrins in primary cells: changes in alpha v-associated beta subunits during differentiation. , 1994, Development.

[34]  C. Welsh,et al.  Cloned mouse cerebrovascular endothelial cells that maintain their differentiation markers for factor VIII, low density lipoprotein, and angiotensin-converting enzyme , 1993, In Vitro Cellular & Developmental Biology - Animal.

[35]  Mendrick Dl,et al.  Temporal expression of VLA-2 and modulation of its ligand specificity by rat glomerular epithelial cells in vitro. , 1993 .

[36]  M. Schwartz,et al.  The extracellular matrix as a cell survival factor. , 1993, Molecular biology of the cell.

[37]  R. Reed,et al.  Blockade of beta 1-integrins in skin causes edema through lowering of interstitial fluid pressure. , 1992, Circulation research.

[38]  H. Hansson,et al.  Extravasation, spread and cellular uptake of Evans blue-labelled albumin around a reproducible small stab-wound in the rat brain , 1976, Acta Neuropathologica.

[39]  H. Wolburg,et al.  Brain endothelial cells and the glio-vascular complex , 2008, Cell and Tissue Research.

[40]  厚東 隆志 Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells , 2007 .

[41]  J. Garcia,et al.  Ultrastructure of the microvasculature in experimental cerebral infarction , 2004, Acta Neuropathologica.

[42]  J. Koziol,et al.  Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  D. Mendrick,et al.  Temporal expression of VLA-2 and modulation of its ligand specificity by rat glomerular epithelial cells in vitro. , 1993, Laboratory investigation; a journal of technical methods and pathology.