A superadditive solution for cephoidal bargaining problems

We present a bargaining solution defined on a class of polytopes in $$\mathbb{R}^n$$ called “cephoids”. The solution generalizes the superadditive solution exhibited by Maschler and Perles for two dimensions. It is superadditive on a subclass of cephoids.

[1]  Joachim Rosenmüller Game Theory: Stochastics, Information, Strategies and Cooperation , 1999 .

[2]  Diethard Pallaschke,et al.  Computing the Minkowski Sum of Prisms , 2006, J. Glob. Optim..

[3]  Sergiu Hart,et al.  An axiomatization of the consistent non-transferable utility value , 2005, Int. J. Game Theory.

[4]  G. Ziegler Lectures on Polytopes , 1994 .

[5]  G. Ewald Combinatorial Convexity and Algebraic Geometry , 1996 .

[6]  R. Kern The shapley transfer value without zero weights , 1985 .

[7]  G. Owen,et al.  The consistent Shapley value for hyperplane games , 1989 .

[8]  Non-existence of super-additive solutions for 3-person games , 1982 .

[9]  Robert J. Aumann,et al.  AN AXIOMATIZATION OF THE NON-TRANSFERABLE UTILITY VALUE , 1985 .

[10]  Michael Maschler,et al.  The super-additive solution for the Nash bargaining game , 1981 .

[11]  John C. Harsanyi,et al.  A Simplified Bargaining Model for the n-Person Cooperative Game , 1963 .

[12]  Sergiu Hart,et al.  An axiomatization of Harsanyi's nontransferable utility solution , 1985 .

[13]  Extension of the Perles-Maschler solution to n-person bargaining games , 1994 .

[14]  Lloyd S. Shapley,et al.  Utility comparisons and the theory of games , 1988 .

[15]  Roger B. Myerson,et al.  Utilitarianism, Egalitarianism, and the Timing Effect in Social Choice Problems , 1981 .

[16]  Diethard Pallaschke,et al.  Pairs of Compact Convex Sets: Fractional Arithmetic with Convex Sets , 2002 .

[17]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[18]  Lloyd S. Shapley,et al.  The Shapley value: Utility comparison and the theory of games , 1967 .