Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease
暂无分享,去创建一个
Steve Epstein | Chih-Cheng Hsu | Peng Chen | Olle Melander | I-Te Lee | Themistocles L Assimes | Ren-Hua Chung | Yik Ying Teo | Danish Saleheen | Nabi Shah | Naveeduddin Ahmed | Tzung-Dau Wang | Khalid Mehmood | Yingchang Lu | Marju Orho-Melander | Børge G Nordestgaard | Sune F Nielsen | Samuli Ripatti | Senay Asma | Robin Young | Praveen Surendran | John Danesh | Adam S Butterworth | Veikko Salomaa | Wei Zhao | Xiuqing Guo | J Wouter Jukema | Emmi Tikkanen | Takashi Kadowaki | Wasim Iqbal | John C Chambers | Yi-Jen Hung | Guillaume Pare | Dharambir K Sanghera | Thomas Quertermous | Naveed Sattar | Scott Damrauer | J. Danesh | T. Assimes | V. Salomaa | Y. Teo | W. Sheu | I. Lee | E. Tai | M. Reilly | D. Rader | K. Mehmood | N. Sattar | S. Ripatti | B. Voight | O. Melander | M. Orho-Melander | K. Taylor | J. Rotter | R. Chowdhury | B. Nordestgaard | Xiuqing Guo | J. Jukema | S. F. Nielsen | D. Saleheen | J. Kooner | E. Bottinger | J. Howson | Wei Zhao | S. Damrauer | Weihua Zhang | J. Chambers | R. Loos | E. Tikkanen | Y. Hung | C. Hsiung | T. Quertermous | D. Sanghera | A. Butterworth | Sonia S Anand | G. Paré | Yingchang Lu | D. Alam | M. Benn | E. Di Angelantonio | R. Frikke-Schmidt | P. R. Kamstrup | A. Rasheed | P. Surendran | A. Tybjaerg-hansen | R. Young | Chih-Cheng Hsu | R. Chung | Peng Chen | T. Kadowaki | W. Iqbal | N. Shah | S. Maeda | N. Mehra | Wen-Jane Lee | K. Liang | P. Frossard | J. Kuo | Jung-Jin Lee | Tzung-Dau Wang | J. Juang | M. Imamura | Faisal Majeed | N. H. Mallick | Fazal-ur-rehman Memon | R. Smit | B. Sapkota | S. Jabeen | Daniel J Rader | Benjamin F Voight | Rajiv Chowdhury | Ruth Frikke-Schmidt | Jerome I Rotter | E Shyong Tai | Ruth J F Loos | Weihua Zhang | Jaspal S Kooner | Emanuele Di Angelantonio | Shiro Maeda | Wayne H-H Sheu | A. Imran | S. Abbas | K. Trindade | N. Qamar | Zia Yaqoob | T. Saghir | S. N. H. Rizvi | A. Memon | S. Z. Rasheed | Naveeduddin Ahmed | Joanna M M Howson | Chao A Hsiung | Yii-Der Ida Chen | Sonia Anand | Kent D Taylor | S. Ralhan | Erwin P Bottinger | Muredach Reilly | Wen-Jane Lee | Marianne Benn | Asif Rasheed | Anne Tybjaerg-Hansen | Jane Z Kuo | Sarju Ralhan | Kae-Woei Liang | Senay Asma | Jung-Jin Lee | Aeron Small | Minako Imamura | Toshimasa Yamauch | Bishwa R Sapkota | Sehrish Jabeen | Atif Imran | Shahid Abbas | Faisal Majeed | Kevin Trindade | Nadeem Qamar | Nadeem Hayyat Mallick | Zia Yaqoob | Tahir Saghir | Syed Nadeem Hasan Rizvi | Anis Memon | Syed Zahed Rasheed | Fazal-Ur-Rehman Memon | Irshad Hussain Qureshi | Tanveer-Us-Salam | Uzma Malik | Narinder Mehra | Jyh-Ming J Juang | Dewan S Alam | Pia R Kamstrup | Roelof Smit | Philippe Frossard | I. Qureshi | U. Malik | Y. Chen | Aeron M. Small | T. Yamauch | Tanveer-us-Salam | S. Epstein | Weihua Zhang | Rajiv Chowdhury | Wei Zhao | R. Loos | K. Taylor | Wei Zhao | Nabi Shah | K. Taylor | P. Kamstrup | E. di Angelantonio
[1] Patrick Callier,et al. Germline deletion of the miR-1792 cluster causes growth and skeletal defects in humans , 2011 .
[2] Yuan Hong Yu,et al. Transmembrane protein 18 enhances the tropism of neural stem cells for glioma cells. , 2008, Cancer research.
[3] Tanya M. Teslovich,et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.
[4] Hynek Pikhart,et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study , 2017, The lancet. Diabetes & endocrinology.
[5] J. Shaw,et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.
[6] Hynek Pikhart,et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials , 2015, The Lancet.
[7] Tamara S. Roman,et al. New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.
[8] Jeffrey B. Boord,et al. Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis , 2001, Nature Medicine.
[9] S. Yusuf,et al. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. , 2015, European heart journal.
[10] C. Ballantyne,et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). , 2012, The American journal of cardiology.
[11] Tadashi Kaname,et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing , 1997, Nature.
[12] Sara M. Willems,et al. Genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease , 2016 .
[13] Karen L. Mohlke,et al. Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals , 2012, PLoS genetics.
[14] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[15] C. Ballantyne,et al. Effects of icosapent ethyl on lipoprotein particle concentration and size in statin-treated patients with persistent high triglycerides (the ANCHOR Study). , 2015, Journal of clinical lipidology.
[16] Jun S. Liu,et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.
[17] Shuang Feng,et al. RAREMETAL: fast and powerful meta-analysis for rare variants , 2014, Bioinform..
[18] Jing Wang,et al. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 , 2013, Nucleic Acids Res..
[19] Simon C. Potter,et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins , 2012, Nature Genetics.
[20] M. Patti,et al. The emerging genetic architecture of type 2 diabetes. , 2008, Cell metabolism.
[21] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[22] Tanya M. Teslovich,et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.
[23] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[24] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[25] Dajiang J. Liu,et al. Meta-Analysis of Gene Level Tests for Rare Variant Association , 2013, Nature Genetics.
[26] S. Ebrahim,et al. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.
[27] Gabor T. Marth,et al. A global reference for human genetic variation , 2015, Nature.
[28] Jeffrey B. Boord,et al. Adipocyte Fatty Acid–Binding Protein, aP2, Alters Late Atherosclerotic Lesion Formation in Severe Hypercholesterolemia , 2002, Arteriosclerosis, thrombosis, and vascular biology.
[29] Jiaquan Xu,et al. Deaths: Final Data for 2013. , 2016, National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System.
[30] Christian Fuchsberger,et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion , 2012, Nature Genetics.
[31] Usman Ahmad,et al. The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia , 2009, European Journal of Epidemiology.
[32] M. Daly,et al. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.
[33] A. Tirosh,et al. Development of a therapeutic monoclonal antibody that targets secreted fatty acid–binding protein aP2 to treat type 2 diabetes , 2015, Science Translational Medicine.
[34] A. Strasser,et al. Bim: a novel member of the Bcl‐2 family that promotes apoptosis , 1998, The EMBO journal.
[35] Helen Schuilenburg,et al. Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.
[36] Bruce M. Spiegelman,et al. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein , 1996, Science.
[37] J. Danesh,et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .
[38] R. Parker,et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2 , 2007, Nature.
[39] David S. Wishart,et al. DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..
[40] C. Greenwood,et al. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease , 2015, Nature Communications.
[41] M. Daly,et al. Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions , 2009, PLoS genetics.
[42] A. Bensman,et al. Truncation of C-mip (Tc-mip), a New Proximal Signaling Protein, Induces c-maf Th2 Transcription Factor and Cytoskeleton Reorganization , 2003, The Journal of experimental medicine.
[43] David M. Evans,et al. Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. , 2015, Annual review of genomics and human genetics.
[44] D. Crocker,et al. Plasma FGF21 concentrations, adipose fibroblast growth factor receptor-1 and β-klotho expression decrease with fasting in northern elephant seals. , 2015, General and comparative endocrinology.
[45] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[46] Christian Gieger,et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.
[47] Yasuo Ohashi,et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials , 2010, The Lancet.
[48] Patrick Callier,et al. Germline deletion of the miR-17-92 cluster causes growth and skeletal defects in humans , 2011, Nature Genetics.
[49] Peggy Hall,et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..
[50] S. Humphries,et al. Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. , 2016, JAMA cardiology.
[51] Tanya M. Teslovich,et al. Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.
[52] C. Gieger,et al. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. , 2015, Atherosclerosis.
[53] M. Daly,et al. An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.
[54] L. Fugger,et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor , 1999, Nature Genetics.
[55] Tanya M. Teslovich,et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.
[56] R. Mägi,et al. Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes , 2015, Diabetes.
[57] Vilmundur Gudnason,et al. Diabetes Mellitus, Fasting Glucose, and Risk of Cause-Specific Death , 2011 .