Robust model rankings of forecasting performance

This paper investigates robust model rankings in out‐of‐sample, short‐horizon forecasting. We provide strong evidence that rolling window averaging consistently produces robust model rankings while improving the forecasting performance of both individual models and model averaging. The rolling window averaging outperforms the (ex post) “optimal” window forecasts in more than 50% of the times across all rolling windows.

[1]  Kenneth S. Rogoff,et al.  The Continuing Puzzle of Short Horizon Exchange Rate Forecasting , 2008 .

[2]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[3]  Todd E. Clark,et al.  Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts , 2008 .

[4]  Exchange Rates and Fundamentals , 2005 .

[5]  Halbert White,et al.  Tests of Conditional Predictive Ability , 2003 .

[6]  Lutz Kilian,et al.  On the Selection of Forecasting Models , 2003, SSRN Electronic Journal.

[7]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[8]  Michael P. Clements,et al.  Forecasting with Breaks , 2006 .

[9]  K. West,et al.  Asymptotic Inference about Predictive Ability , 1996 .

[10]  Andrew J. Patton,et al.  Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White , 2009 .

[11]  L. Kilian,et al.  In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use? , 2002, SSRN Electronic Journal.

[12]  David H. Papell,et al.  Out-of-Sample Exchange Rate Predictability with Taylor Rule Fundamentals , 2008 .

[13]  Kenneth S. Rogoff,et al.  Exchange rate models of the seventies. Do they fit out of sample , 1983 .

[14]  Barbara Rossi,et al.  Out-of-Sample Forecast Tests Robust to the Choice of Window Size , 2011 .

[15]  J. Stock,et al.  Combination forecasts of output growth in a seven-country data set , 2004 .

[16]  H. White,et al.  Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .

[17]  A. Timmermann,et al.  Small Sample Properties of Forecasts from Autoregressive Models Under Structural Breaks , 2003, SSRN Electronic Journal.

[18]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[19]  R. Giacomini,et al.  Detecting and Predicting Forecast Breakdowns , 2006, SSRN Electronic Journal.

[20]  Todd E. Clark,et al.  Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis , 2004 .

[21]  M. Pesaran,et al.  Forecasting the Swiss economy using VECX models: An exercise in forecast combination across models and observation windows , 2008, National Institute Economic Review.

[22]  Barbara Rossi,et al.  Exchange Rate Predictability , 2013 .

[23]  Todd E. Clark,et al.  Averaging Forecasts from Vars with Uncertain Instabilities , 2006 .

[24]  Jurgen A. Doornik,et al.  Evaluating Automatic Model Selection , 2011 .

[25]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[26]  Yin-Wong Cheung,et al.  Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive? , 2002 .

[27]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[28]  Michael P. Clements,et al.  Pooling of Forecasts , 2004 .

[29]  Ken West,et al.  Chapter 3 Forecast Evaluation , 2006 .

[30]  Todd E. Clark,et al.  Forecast Combination Across Estimation Windows , 2011 .

[31]  J. Stock,et al.  Forecasting Output and Inflation: The Role of Asset Prices , 2001 .

[32]  M. Hashem Pesaran,et al.  Selection of estimation window in the presence of breaks , 2007 .

[33]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[34]  Til Schuermann,et al.  Forecasting Economic and Financial Variables with Global VARs , 2007 .

[35]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[36]  Lucio Sarno,et al.  Exchange Rates and Fundamentals: Footloose or Evolving Relationship? , 2008 .