Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature

Simulations of nanoindentation in single crystals are performed using a finite temperature coupled atomistic/continuum discrete dislocation (CADD) method. This computational method for multiscale modeling of plasticity has the ability of treating dislocations as either atomistic or continuum entities within a single computational framework. The finite-temperature approach here inserts a Nose-Hoover thermostat to control the instantaneous fluctuations of temperature inside the atomistic region during the indentation process. The method of thermostatting the atomistic region has a significant role on mitigating the reflected waves from the atomistic/continuum boundary and preventing the region beneath the indenter from overheating. The method captures, at the same time, the atomistic mechanisms and the long-range dislocation effects without the computational cost of full atomistic simulations. The effects of several process variables are investigated, including system temperature and rate of indentation. Results and the deformation mechanisms that occur during a series of indentation simulations are discussed.

[1]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[2]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[3]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[4]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[5]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[6]  K. Komvopoulos,et al.  Molecular dynamics simulation of single and repeated indentation , 1997 .

[7]  Leonid V. Zhigilei,et al.  A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation , 1999 .

[8]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[9]  H. V. Swygenhoven,et al.  Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation , 2004 .

[10]  R. C. Picu Atomistic-continuum simulation of nano-indentation in molybdenum , 2000 .

[11]  V. Shenoy Multi-scale modeling strategies in materials science—The quasicontinuum method , 2003 .

[12]  A. Nakano,et al.  Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: A multimillion atom molecular dynamics study , 2000 .

[13]  Kiyoshi Yokogawa,et al.  Surface oxidation of a Nb(100) single crystal by scanning tunneling microscopy , 2002 .

[14]  Ronald E. Miller,et al.  Finite Temperature Coupled Atomistic/Continuum Discrete Dislocation Dynamics Simulation of Nanoindentation , 2006 .

[15]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[16]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[17]  J. Zimmerman,et al.  Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation , 2003 .

[18]  H. V. Swygenhoven,et al.  Atomistic simulations of spherical indentations in nanocrystalline gold , 2003 .

[19]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[20]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[21]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[22]  Pierre A Deymier,et al.  Concurrent multiscale model of an atomic crystal coupled with elastic continua , 2002 .

[23]  Vivek B. Shenoy,et al.  Finite Temperature Quasicontinuum Methods , 1998 .

[24]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[25]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[26]  B. Bhushan,et al.  A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications , 2002 .

[27]  Jee-Gong Chang,et al.  Molecular dynamics analysis of temperature effects on nanoindentation measurement , 2003 .

[28]  R. LeSar,et al.  Finite-temperature defect properties from free-energy minimization. , 1989, Physical review letters.

[29]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[30]  Joseph H. Simmons,et al.  A Concurrent multiscale finite difference time domain/molecular dynamics method for bridging an elastic continuum to an atomic system , 2003 .

[31]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[32]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[33]  Gregory A. Voth,et al.  Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics , 1997 .

[34]  William A. Curtin,et al.  A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .

[35]  K. V. Van Vliet,et al.  Simulations of cyclic normal indentation of crystal surfaces using the bubble-raft model , 2002 .

[36]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[37]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[38]  Stefano Curtarolo,et al.  Dynamics of an inhomogeneously coarse grained multiscale system. , 2002, Physical review letters.

[39]  Harold S. Park,et al.  A temperature equation for coupled atomistic/continuum simulations , 2004 .

[40]  van der Erik Giessen,et al.  A discrete dislocation analysis of bending , 1999 .

[41]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[42]  Holian,et al.  Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.

[43]  V. R. Parameswaran,et al.  Dislocation Mobility in Aluminum , 1972 .

[44]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[45]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[46]  J. C. Hamilton,et al.  Surface step effects on nanoindentation. , 2001, Physical review letters.