Z-pinch plasma neutron sources

A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields ∼3×1013, in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion ac...

[1]  Gerber,et al.  Enhanced stability and neutron production in a dense Z-pinch plasma formed from a frozen deuterium fiber. , 1987, Physical review letters.

[2]  S. P. Hatchett,et al.  Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers , 1987 .

[3]  T. Mehlhorn Intense ion beams for inertial confinement fusion , 1997 .

[4]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[5]  C. Coverdale,et al.  Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2 x 10(9) Kelvin. , 2006, Physical review letters.

[6]  K. Whitney,et al.  Transition from I4 to I2 scaling of K-shell emission in aluminum array implosions , 1990 .

[7]  G. Cooper,et al.  D-D fusion experiments using fast Z pinches , 1998 .

[8]  I. Kurchatov On the possibility of producing thermonuclear reactions in a gas discharge , 1957 .

[9]  J. Giuliani,et al.  A PROBABILISTIC MODEL FOR CONTINUUM TRANSPORT IN DENSE, OPTICALLY THICK PLASMAS , 1995 .

[10]  Robert W. Clark,et al.  Neutron production and implosion characteristics of a deuterium gas-puff Z pinch , 2007 .

[11]  J. Shlachter Solid D2 fiber experiments on HDZP-II , 1990 .

[12]  P. B. Radha,et al.  Study of direct-drive, deuterium–tritium gas-filled plastic capsule implosions using nuclear diagnostics at OMEGA , 2001 .

[13]  D. J. Johnson,et al.  ICF target diagnostics on PBFA II (invited) , 1992 .

[14]  J. Giuliani,et al.  Influence of L‐shell dynamics on K‐shell yields for imploding krypton Z‐pinch plasmas , 1995 .

[15]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[16]  A. Dangor,et al.  Snowplow-like behavior in the implosion phase of wire array Z pinches , 2002 .

[17]  P B Radha,et al.  Measuring implosion dynamics through rhoR evolution in inertial-confinement fusion experiments. , 2003, Physical review letters.

[18]  A. Velikovich,et al.  Efficient radiation production in long implosions of structured gas-puff Z pinch loads from large initial radius. , 2005, Physical review letters.

[19]  C. Coverdale,et al.  Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions , 2004 .

[20]  Hiroshi Azechi,et al.  Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions , 1986 .

[21]  A. Velikovich,et al.  Valve and nozzle design for injecting a shell-on-shell gas puff load into a z pinch , 2000 .

[22]  Mccall Calculation of neutron yield from a dense Z pinch. , 1989, Physical review letters.

[23]  J. Huba NRL: Plasma Formulary , 2004 .

[24]  Edward I. Moses,et al.  The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies , 2001 .

[25]  Davis,et al.  Buoyant magnetic flux tubes enhance radiation in Z pinches , 2000, Physical review letters.

[26]  D. J. Dawson,et al.  Accurate Evaluation of Stopping and Straggling Mean Excitation Energies for N, O, H2, N2, O2, NO, NH3, H2 O, and N2 O Using Dipole Oscillator Strength Distributions: A Test of the Validity of Bragg's Rule , 1977 .

[27]  R. H. Ritchie,et al.  Z 1 3 Effect in the Stopping Power of Matter for Charged Particles , 1972 .

[28]  W. Stygar,et al.  Efficient argon K-shell radiation from a Z pinch at currents >15 MA , 2001 .

[29]  S. Colgate,et al.  Neutron Production in Linear Deuterium Pinches , 1958 .

[30]  J. Levine,et al.  Proof-of-principle laser-induced fluorescence measurements of gas distributions from supersonic nozzles , 2003 .

[31]  R. E. Peterkin,et al.  Transport of Magnetic Flux in an Arbitrary Coordinate ALE Code , 1998 .

[32]  J. Levine,et al.  K-shell radiation from nickel wire arrays at 18 MA , 2002 .

[33]  S. Slutz,et al.  Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z-Pinch Dynamic Hohlraums , 2004 .

[34]  N. R. Pereira,et al.  X rays from z‐pinches on relativistic electron‐beam generators , 1988 .

[35]  Stephan W Koch,et al.  Band‐edge nonlinearities in direct‐gap semiconductors and their application to optical bistability and optical computing , 1988 .

[36]  J. Apruzese,et al.  Basic considerations for scaling Z -pinch x-ray emission with atomic number , 1990 .

[37]  L. Rudakov,et al.  Model of enhanced energy deposition in a Z-pinch plasma , 2000 .

[38]  M. M. Basko,et al.  Ignition conditions for magnetized target fusion in cylindrical geometry , 2000 .

[39]  N. Rostoker,et al.  Dense Z-pinches , 1989 .

[40]  Robert W. Clark,et al.  Titanium K-shell x-ray production from high velocity wire array implosions on the 20-MA Z accelerator , 1999 .

[41]  G. Cooper,et al.  Deuterium gas-puff Z-pinch implosions on the Z acceleratora) , 2006 .

[42]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[43]  Richard A. Lerche,et al.  Absolute measurements of neutron yields from DD and DT implosions at the OMEGA laser facility using CR-39 track detectors , 2002 .

[44]  A. Velikovich,et al.  An efficient tabulated collisional radiative equilibrium radiation transport model suitable for multidimensional hydrodynamics calculations , 2001 .