Solid‐State Sodium Batteries

Rechargeable Na‐ion batteries (NIBs) are attractive large‐scale energy storage systems compared to Li‐ion batteries due to the substantial reserve and low cost of sodium resources. The recent rapid development of NIBs will no doubt accelerate the commercialization process. As one of the indispensable components in current battery systems, organic liquid electrolytes are widely used for their high ionic conductivity and good wettability, but the low thermal stability, especially the easy flammability and leakage make them at risk of safety issues. The booming solid‐state batteries with solid‐state electrolytes (SSEs) show promise as alternatives to organic liquid systems due to their improved safety and higher energy density. However, several challenges including low ionic conductivity, poor wettability, low stability/incompatibility between electrodes and electrolytes, etc., may degrade performance, hindering the development of practical applications. In this review, an overview of Na‐ion SSEs is first outlined according to the classification of solid polymer electrolytes, composite polymer electrolytes, inorganic solid electrolytes, etc. Furthermore, the current challenges and critical perspectives for the potential development of solid‐state sodium batteries are discussed in detail.

[1]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[2]  Kazutaka Suzuki,et al.  On the Structures of Alkali Polyaluminates , 1968 .

[3]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[4]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[5]  F. Will Effect of Water on Beta Alumina Conductivity , 1976 .

[6]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[7]  M. Breiter,et al.  Production of hydronium beta alumina from sodium beta alumina and characterization of conversion products , 1977 .

[8]  J. Kafalas,et al.  High Na+-ion conductivity in Na5YSi4O12☆ , 1978 .

[9]  R. D. Shannon,et al.  Ionic conductivity in sodium yttrium silicon oxide (Na5YSi4O12)-type silicates , 1978 .

[10]  G. Farrington,et al.  Hydronium beta″ alumina: A fast proton conductor , 1978 .

[11]  A. Marini,et al.  Reactivity of β-aluminas with water , 1981 .

[12]  G. Farrington,et al.  Ionic Conductivity in Lithium and Lithium‐Sodium Beta Alumina , 1981 .

[13]  M. Ratner,et al.  Influence of Ion Pairing on Cation Transport in the Polymer Electrolytes Formed by Poly(ethylene oxide) with Sodium TetraFiuoroborate and Sodium Tetrahydroborate , 1982 .

[14]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[15]  Influence of doping on some physical properties of NASICON , 1983 .

[16]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[17]  A. Virkar,et al.  Transfomation toughening of β″-alumina by incorporation of zirconia , 1983 .

[18]  Reinhard Knödler,et al.  Thermal properties of sodium-sulphur cells , 1984 .

[19]  T. Jacobsen,et al.  Poly(ethylene oxide)―sodium perchlorate electrolytes in solid-state sodium cells , 1988 .

[20]  Preparation and structure of Li-Stabilized Na+ β″-Alumina single crystals , 1988 .

[21]  Wu Shousong,et al.  The lead/acid battery industry in China , 1989 .

[22]  F. Krok,et al.  On some properties of NASICON doped with MgO and CoO , 1989 .

[23]  S. Greenbaum,et al.  Electrical conductivity, differential scanning calorimetry and nuclear magnetic resonance studies of amorphous poly(ethylene oxide) complexed with sodium salts , 1989 .

[24]  M. Jansen,et al.  Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate , 1992 .

[25]  P. Bruce,et al.  Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3 , 1993, Science.

[26]  K. Abraham,et al.  Li Ion Conductive Electrolytes Based on Poly(vinyl chloride) , 1993 .

[27]  S. Chandra,et al.  Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6 , 1995 .

[28]  F. Aldinger,et al.  Direct Synthesis of Binary K-.beta.- and K-.beta.''-Alumina. 1. Phase Relations and Influence of Precursor Chemistry , 1995 .

[29]  M. Doeff,et al.  Effect of Electrolyte Composition on the Performance of Sodium/Polymer Cells , 1997 .

[30]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[31]  M. Ratner,et al.  Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling , 2000 .

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  M. J. Reddy,et al.  Study of transport and electrochemical cell characteristics of PVP:NaClO3 polymer electrolyte system , 2001 .

[34]  K. H. Andersen,et al.  Structures of the polymer electrolyte complexes PEO6:LiXF6 (X = P, Sb), determined from neutron powder diffraction data , 2001 .

[35]  R. O. Fuentes,et al.  Reaction of NASICON with water , 2001 .

[36]  B. Scrosati New approaches to developing lithium polymer batteries. , 2001, Chemical record.

[37]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[38]  S. Kondo,et al.  Fabrications and properties of composite solid-state electrolytes , 2003 .

[39]  P. Bruce,et al.  Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. , 2003, Journal of the American Chemical Society.

[40]  V. S. Raghunathan,et al.  Microwave processing of sodium beta alumina , 2003 .

[41]  Young Jin Kim,et al.  Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. , 2004, Chemical communications.

[42]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[43]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[44]  W. Chen,et al.  Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications , 2006, The European physical journal. E, Soft matter.

[45]  L. Bronstein,et al.  Solid Polymer Single-Ion Conductors: Synthesis and Properties , 2006 .

[46]  Anila Sharma,et al.  Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications , 2008 .

[47]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[48]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[49]  Z. Osman,et al.  A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes , 2010 .

[50]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[51]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[52]  Vincenzo Antonucci,et al.  Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications. , 2010, ChemSusChem.

[53]  K. Kiran Kumar,et al.  Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps , 2011 .

[54]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[55]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[56]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[57]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[58]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[59]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[60]  S. Ramesh,et al.  Enhancement of ionic conductivity and structural properties by 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate ionic liquid in poly(vinylidene fluoride–hexafluoropropylene)‐based polymer electrolytes , 2012 .

[61]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[62]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[63]  A. Petric,et al.  Synthesis of sodium β″-alumina powder by sol–gel combustion , 2012 .

[64]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[65]  P. Ajayan,et al.  High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. , 2012, Nano letters.

[66]  Chen Chao,et al.  Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal—insulator—semiconductor high-electron-mobility transistors , 2012 .

[67]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[68]  Lei Li,et al.  Sodium-ion batteries using ion exchange membranes as electrolytes and separators. , 2013, Chemical communications.

[69]  Hui Yang,et al.  Preparation and characterization of TiO2 doped and MgO stabilized Na–β″-Al2O3 electrolyte via a citrate sol–gel method , 2013 .

[70]  M. Armand,et al.  Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes , 2013 .

[71]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[72]  A. Hayashi,et al.  Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries , 2013 .

[73]  Haibin Wang,et al.  Nafion membranes as electrolyte and separator for sodium-ion battery , 2014 .

[74]  Dan Xu,et al.  3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance , 2014 .

[75]  A. Hayashi,et al.  Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling , 2014 .

[76]  R. Durairaj,et al.  Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt , 2014, PloS one.

[77]  Yunhui Gong,et al.  An All‐Ceramic Solid‐State Rechargeable Na+‐Battery Operated at Intermediate Temperatures , 2014 .

[78]  A. Hayashi,et al.  High sodium ion conductivity of glass-ceramic electrolytes with cubic Na 3 PS 4 , 2014 .

[79]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[80]  V. Viallet,et al.  An all-solid state NASICON sodium battery operating at 200 °C , 2014 .

[81]  Thomas H. Epps,et al.  Block copolymer electrolytes for rechargeable lithium batteries , 2014 .

[82]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[83]  Hui Wu,et al.  Exceptional Superionic Conductivity in Disordered Sodium Decahydro‐closo‐decaborate , 2014, Advanced materials.

[84]  G. Sahu,et al.  Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4 , 2014 .

[85]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[86]  Zhiqiang Zhu,et al.  All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. , 2014, Journal of the American Chemical Society.

[87]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[88]  A. Manthiram,et al.  Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. , 2014, The journal of physical chemistry letters.

[89]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[90]  M. Armand,et al.  Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization , 2014 .

[91]  Jeong-Hee Choi,et al.  All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes , 2014 .

[92]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[93]  Shuai Li,et al.  Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites , 2015 .

[94]  Frank Tietz,et al.  Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries , 2015 .

[95]  Kai Zhang,et al.  Nanostructured Mn-based oxides for electrochemical energy storage and conversion. , 2015, Chemical Society reviews.

[96]  A. Hayashi,et al.  Sodium-ion Conducting Na3PS4 Electrolyte Synthesized via a Liquid-phase Process Using N-Methylformamide , 2015 .

[97]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[98]  P. Johansson,et al.  Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries , 2015 .

[99]  Li-Min Wang,et al.  Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity , 2015 .

[100]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[101]  Christopher J. Ellison,et al.  Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix , 2015 .

[102]  A. Manthiram,et al.  Ambient‐Temperature Sodium–Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber‐Activated Carbon Composite Electrode , 2015 .

[103]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[104]  Shyue Ping Ong,et al.  Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor , 2015 .

[105]  Yi Cui,et al.  A Highly Reversible Room-Temperature Sodium Metal Anode , 2015, ACS central science.

[106]  Weidong Zhou,et al.  A Sodium‐Ion Battery with a Low‐Cost Cross‐Linked Gel‐Polymer Electrolyte , 2016 .

[107]  G. Ceder,et al.  Structural and Na-ion conduction characteristics of Na3PSxSe4−x , 2016 .

[108]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[109]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[110]  Wolfgang G. Zeier,et al.  Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na3PS4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. , 2016, ACS applied materials & interfaces.

[111]  Guangyu Chen,et al.  Microstructure control and properties of β″-Al2O3 solid electrolyte , 2016 .

[112]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[113]  Hui Wang,et al.  Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study. , 2016, Inorganic chemistry.

[114]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[115]  Jou-Hyeon Ahn,et al.  A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode , 2016 .

[116]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[117]  Shiguo Zhang,et al.  Ionic liquids and their solid-state analogues as materials for energy generation and storage , 2016, Nature Reviews Materials.

[118]  M. Wagemaker,et al.  Diffusion Mechanism of the Sodium-Ion Solid Electrolyte Na3PS4 and Potential Improvements of Halogen Doping , 2016 .

[119]  Zachary D. Hood,et al.  An Air-Stable Na3 SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. , 2016, Angewandte Chemie.

[120]  Xingguo Qi,et al.  Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications , 2016 .

[121]  Lilu Liu,et al.  Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. , 2016, ACS applied materials & interfaces.

[122]  Lilu Liu,et al.  Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodium‐Ion Batteries , 2016 .

[123]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[124]  Yong‐Sheng Hu,et al.  A ceramic/polymer composite solid electrolyte for sodium batteries , 2016 .

[125]  Q. Ma,et al.  Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors , 2016 .

[126]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[127]  Joon Ching Juan,et al.  A review of polymer electrolytes: fundamental, approaches and applications , 2016, Ionics.

[128]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[129]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[130]  B. Scrosati,et al.  Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries , 2016 .

[131]  Shyue Ping Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[132]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[133]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[134]  M. Paskevicius,et al.  Halogenated Sodium-closo-Dodecaboranes as Solid-State Ion Conductors , 2017 .

[135]  Yutao Li,et al.  Rechargeable Sodium All-Solid-State Battery , 2017, ACS central science.

[136]  Hansong Cheng,et al.  Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly(bis(4-carbonyl benzene sulfonyl)imide-co-2,5-diamino benzesulfonic acid) polymer electrolyte , 2017 .

[137]  Xingguo Qi,et al.  In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries , 2017 .

[138]  Jin-Sik Kim,et al.  Influence of Fe and Ti addition on properties of Na+-β/β″-alumina solid electrolytes , 2017, Metals and Materials International.

[139]  Xingguo Qi,et al.  A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries , 2017 .

[140]  V. Battaglia,et al.  Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions , 2017 .

[141]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[142]  Yaxiang Lu,et al.  A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode , 2017 .

[143]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[144]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[145]  Lee Loong Wong,et al.  Na3+xMxP1−xS4 (M = Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2−δ(SO4)3|Na3+xMxP1−xS4|Na2Ti3O7 , 2017 .

[146]  M. Marcinek,et al.  Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts , 2017, Scientific Reports.

[147]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[148]  L. Duchêne,et al.  A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. , 2017, Chemical communications.

[149]  Boyang Liu,et al.  Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. , 2017, Nano letters.

[150]  H. Yadegari,et al.  Detection of Electrochemical Reaction Products from the Sodium-Oxygen Cell with Solid-State 23Na NMR Spectroscopy. , 2017, Journal of the American Chemical Society.

[151]  H. Katsui,et al.  Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition , 2017 .

[152]  A. Yamada,et al.  The crystal structure and sodium disorder of high-temperature polymorph β-Na3PS4 , 2017 .

[153]  Qian Sun,et al.  Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition , 2017, Advanced materials.

[154]  Chenglong Zhao,et al.  Review on anionic redox for high-capacity lithium- and sodium-ion batteries , 2017 .

[155]  Xiulin Fan,et al.  High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery. , 2017, ACS nano.

[156]  Jiulin Wang,et al.  Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All‐Solid‐State Sodium‐Ion Battery , 2017, Advanced science.

[157]  Wenhao Ren,et al.  Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. , 2017, Small.

[158]  Hong Wang,et al.  Electrolyte design strategies and research progress for room-temperature sodium-ion batteries , 2017 .

[159]  Jun Lu,et al.  Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid‐State Sodium‐Ion Batteries , 2017, Advanced materials.

[160]  Computational Prediction and Evaluation of Solid-State Sodium Superionic Conductors Na7P3X11 (X = O, S, Se) , 2017 .

[161]  Yong‐Sheng Hu,et al.  A Self‐Forming Composite Electrolyte for Solid‐State Sodium Battery with Ultralong Cycle Life , 2017 .

[162]  Hongkyung Lee,et al.  Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer. , 2017, ACS applied materials & interfaces.

[163]  R. Černý,et al.  Modified Anion Packing of Na2B12H12 in Close to Room Temperature Superionic Conductors. , 2017, Inorganic chemistry.

[164]  Li Lu,et al.  A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries , 2017 .

[165]  Adam P. Cohn,et al.  Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. , 2017, Nano letters.

[166]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[167]  M. Armand,et al.  Mixed Phase Solid‐State Plastic Crystal Electrolytes Based on a Phosphonium Cation for Sodium Devices , 2017 .

[168]  Chem. , 2020, Catalysis from A to Z.