OBJECTIVE
To develop a kernel optimization method called coil-combined split slice-GRAPPA (CC-SSG) to improve the accuracy of the reconstructed coil-combined images for simultaneous multi-slice (SMS) diffusion weighted imaging (DWI) data.
METHODS
The CC-SSG method optimizes the tuning parameters in the k-space SSG kernels to achieve an optimal trade-off between the intra-slice artifact and inter-slice leakage after the root-sum-of-squares (rSOS) coil combining of the de-aliased SMS DWI data. A detailed analysis is conducted to evaluate the contributions of the intra-slice artifact and inter-slice leakage to the total reconstruction error after coil combining.
RESULTS
Comparisons of the proposed CC-SSG method with the slice-GRAPPA (SG) and split slice-GRAPPA (SSG) methods are provided using two in-vivo readout-segmented (RS) EPI datasets collected from stroke patients. The CC-SSG method demonstrates improved accuracy of the reconstructed coil-combined images and the estimated diffusion tensor imaging (DTI) maps.
CONCLUSION
CC-SSG strikes a good balance between the intra-slice artifact and inter-slice leakage for rSOS coil combining, and so can yield better reconstruction performance compared to SG and SSG for rSOS reconstruction. The optimal trade-off between the two artifacts is robust to the contrast of SMS data and the choice of the coil combining method.